Lef #9 The ITAZ | | | | | | They pro | ful III | |---------------|------------------------------|------------------|------------------------|------------|---|---------------------------------------| | ' | well international | w. | | | S | SUPPORTING DOCUMENT | | GO NO. | S/A NO. | PAGE 1 OF | TOTAL PAG | SES | REV LTR/CHG NO. | NUMBER . | | 29841 | 96215 | 61 | 61 | | SEE SUMMARY OF CHG | N704SRR990034 | | PROGRAM | TITLE | | | | | - | | Sodium [| Disposal F | acility Cl | losure | | | 3/2 | | DOCUMENT | TITLE | | | | *************************************** | *** | | Haseline | Radiolog | ical Surve | ey of the So | odium | Disposal Fac | cility (T886) | | DOCUMENT | TYPE | | | KEY NO | MINS | | | Safety R | Review Rep | ort | S | | y, Ambient Ga | amma | | ORIGINAL I | SSUE DATE | REL. DAT | E | APPRO | VALS | DATE | | #* <u>:</u> # | #! | 08-3 | 1-92 80. | | | 52 | | REPARED | BANDULA | DEPT
10 Ava 9 | MAIL ADDR | 1 | P. Rutherforg | h. 0 | | ohn J. | collins | | | ١. | , , , , , , , , , , , , , , , , , , , | hylkulasta 8/12/9: | | | | D641 | 055-T100 | 1 | A. Klein | he hurapa stila | | IR&D PROGI | RAM? YES 🗌 NO
'ER TPA NO. | | mb i a | | | of the results of | | | DISTRIBUTIO | N | ABSTRACT ine | beta/ | gamma radiol | s the results of ogical survey at the | | * | NAME | MAIL
ADDR | Sodium D | ispos | al Facility | (T886) site. Th | | | | | | | | posure level at or | | | Klein
Gaylord | T009
T038 | meter hei
13.8 uR/H | | bove the sur | face was found to h | | | Hardy | T009 | 13.0 UK/I | ır. | | | | | Horton | T009 | The | surve | v found elev | vated gamma activit | | 1 | Tuttle | T100 | | | | Lower Pond Basin | | *P.D. | Rutherfor | | | | | 5 uR/hr, indicating | | | | | | ence o | of radioisoto | pe contamination i | | | | | that area | | | our locations wer | | · | | | marginall | | bove backgr | | | | | | | | | nd basin describe | | | | | square fe | | ed area occ | upying about 100 | | | | | One | locat | ion in the U | opper Pond Basin ha | | | | | | | elevated beta | | | | | | The | measu | rements over | the rest of the SD | | | | | | | | ckground radiatio | | | | | | | | istinguishable fro | | | | | uncontami
surroundi | | | d rocks in th | | | | 1 | | _ | | | | | | ļ | RESERVED FOR PR | ROPRIETA | RY/LEGAL NOTICES | * COMPLETE DOCUMENT NO ASTERISK, TITLE PAGE/SUMMARY OF CHANGE PAGE ONLY ## Table of Contents | | ABSTRACT | 1 | |----|---------------------------------------|----| | 1. | INTRODUCTION | 6 | | 2. | SUMMARY OF RESULTS | 6 | | 3. | IDENTIFICATION OF FACILITY | 9 | | 4. | SURVEY SCOPE | 10 | | 5. | SURVEY PROCEDURES | 10 | | 6. | DATA ANALYSIS | 13 | | 7. | SURVEY RESULTS | 15 | | | 7.1. Overall Survey Data Distribution | 16 | | | 7.2. Lower Pond Basin | 18 | | | 7.3. Upper Pond Basin | 27 | | | 7.4. West Area | 33 | | | 7.5. Northwest Area | 44 | | | 7.6. Northeast Area | 50 | | | 7.7. East Area | 56 | | 8. | REFERENCES | 61 | ## Tables | 1. | Statistical Summary of SDF Baseline beta/gamma Survey Results | 6 | |------|---|-------------| | 2. | List of SDF Locations with Statistically Significant Activity | 7 | | 3-1. | Statistical Summary of Lower Pond Basin Survey Results | 18 | | 3-2. | Lower Pond Basin: Averaged Radiation Levels at Each Location | 19 | | 4-1. | Statistical Summary of Upper Pond Basin Survey Results | 27 | | 4-2. | Upper Pond Basin: Averaged Radiation Levels at Each Location | 28 | | 5-1. | Statistical summary of West Area Survey Results | ;3 3 | | 5-2. | West Area: Averaged Radiation Levels at Each Location | 34 | | 6-1. | Statistical Summary of Northwest Area Survey Results | 44 | | 6-2. | Northwest Area: Averaged Radiation Levels at Each Location | 45 | | 7-1. | Statistical Summary of Northeast Area Survey Results | 50 | | 7-2. | Northeast Area: Averaged Radiation Levels at Each Location | 51 | | 8-1. | Statistical Summary of East Area Survey Results | 56 | | 8-2. | East Area: Averaged Radiation Levels at Each Location | 57 | # Figures | Τ. | of the SDF Site | 9 | |-----|--|----| | 2. | SDF Site Map Showing Area Designations | 11 | | 3. | Cumulative Probability Plot of Gamma Data vs. Gaussian Normal Distribution | 16 | | 4. | Cumulative Probability Plot of Beta Data vs. Gaussian Normal Distribution | 17 | | 5. | Map of Lower Pond Gamma Activity at 1-m | 20 | | 6. | Map of Lower Pond Gamma Exposure at 1-m | 21 | | 7. | Map of Lower Pond Surface Beta Activity | 22 | | 8. | Map of Lower Pond Locations With Statistically Significant Gamma Exposure | 23 | | 9. | Map of Lower Pond Locations With Statistically Significant Beta Activity | 24 | | 10. | Isoplot of Lower Pond Gamma Exposure Data Isometric View | 25 | | 11. | Isoplot of Lower Pond Gamma Exposure Data Map View | 26 | | 12. | Map of Upper Pond Gamma Activity at 1-m | 27 | | 13. | Map of Upper Pond Gamma Exposure at 1-m | 30 | | 14. | Map of Upper Pond Surface Beta Activity | 31 | | 15. | Map of Upper Pond Locations With Statistically Significant Beta Activity | 32 | | 16. | Map of West Area Gamma Activity at 1-m 36/ | 37 | | 17. | Map of West Area Gamma Exposure at 1-m 38/ | 39 | | 18. | Map of West Area Surface Beta Activity 40/ | 41 | | 19. | Map of West Area Locations With Statistically Significant Gamma Exposure 42/ | 43 | ## N704SRR990034 page 5 | 20. | Map of Northwest Area Gamma Activity at 1-m | 46 | |-----|---|----| | 21. | Map of Northwest Area Gamma Exposure at 1-m | 47 | | 22. | Map of Northwest Area Surface Beta Activity | 48 | | 23. | Map of Northwest Area Locations With Statistically Significant Gamma Exposure | 49 | | 24. | Map of Northeast Area Gamma Activity at 1-m | 53 | | 25. | Map of Northeast Area Gamma Exposure at 1-m | 54 | | 26. | Map of Northeast Area Surface Beta Activity | 55 | | 27. | Map of East Area Gamma Activity at 1-m | 58 | | 28. | Map of East Area Gamma Exposure at 1-m | 59 | | 29. | Map of East Area Surface Beta Activity | 60 | #### 1. Introduction: This report documents the beta/gamma radiological survey of the Sodium Disposal Facility (SDF), and analysis of the data therefrom. The survey was undertaken to detemine the site baseline radiological condition in preparation for site remediation. The procedures governing the conduct of this survey are described in reference 1. An amended (red-lined) copy of the procedure has been prepared to reflect a few changes that were found to be needed during the survey. The amended version will be published as Revision A of the original. #### 2. Summary of Results: Beta and Gamma activity measurements were made at 812 survey points across the canyon where the two acre SDF site is located. The data from the survey has been statistically analyzed, and the results of the analysis for the total survey are summarized in Table 1. The average ambient gamma exposure level for the site, at one meter height above the surface, was found to be 13.8 uR/hr. | Table 1: | TOTAL | SDF | BASELINE | SURVEY | RESHITS | |----------|-------|-----|----------|--------|---------| | | AV | G GAMMA | AVG BETA | AVG GAMMA | AVG BETA | |-------------------|----------|----------|--------------|-----------|--------------| | | | -m (cpm) | a 1-cm (dpm) | | (dpm/100cm2) | | | | | | | | | median : | = | 2966 | 841 | 13.8 | 4,207 | | mean | = | 2996 | 840 | 13.9 | 4,200 | | sdev : | = | 225 | 111 | 1.0 | 555 | | mex : | = | 5914 | 1,243 | 27.5 | 6,215 | | min : | 3 | 2097 | 465 | 9.8 | 2,325 | | n : | 2 | 812 | 811 | 812 | 811 | | | • | ••••• | ***** | ***** | ***** | | 8kGd : | = | 2966 | 841 | 13.8 | 4,207 | | ssa based on tota | al 4 | 523 | + 258 | + 2.4 | + 1,291 | | sdf survey o | data: | 3489 | 1,099 | 16.2 | 5,498 | | | | | | | | Table 1. Statistical Summary of SDF Baseline Survey Results. It should be noted that this survey provides data to evaluate the likely presence of radioactve contaminants at or near the soil surface, but does not provide data about the presence or amount of radioactive contaminants below the surface. Data for evaluating radiation contaminant conditions beneath the surface must be developed from the analysis of core samples, and from radiation monitoring performed during excavation. Seventeen survey measurement locations were found to have statistically significant near-surface radioactivity levels. Of these, only one area of the SDF site can be said to be unambiguously radioactively contaminated. The statistically significant levels found in the other SDF areas are all at marginally elevated activity levels, and therefore those sites must be further evaluated by soil sample analysis to determine if they are actually contaminated. The SDF site locations having elevated radioactivity levels are listed in Table 2. | Table 2: SDF Locations with Activity Levels that Equal or Exceed SSA | Table 2: | SDF | Locations | with | Activity | Levels | that | Equal | or | Exceed | SSA | |--|----------|-----|-----------|------|----------|--------|------|-------|----|--------|-----| |--|----------|-----|-----------|------|----------|--------|------|-------|----|--------|-----| | SD F
AREA | N/S
COORD | WEST D | AVG GAMMA
a 1-m (cpm) | AVG BETA
a 1-cm (dpm) | AVG GAMMA
EXPOSURE
(UR/Hr) | AVG BETA
(dpm/100cm2) | |--------------|--|---
--|--|--|---| | | 120 N
120 N
110 N
100 N
20 S
30 S
40 S
50 S
30 S
70 S
70 S
80 S
90 S | 217 W
210 W
220 W
230 W
170 W
180 W
180 W
150 W
330 W
390 W
390 W
390 W
390 W | 3954 ! 3484 ! 3685 ! 3650 ! 3743 ! 3512 ! 5914 ! 3576 ! 3494 ! 35753 ! 3483 ! 3753 ! 3496 ! 3743 ! | 866
923
862
943
1022
874
1243 !
1054
899
798
944
892
726
804
835 | 18.4 ! 16.2 ! 17.1 ! 16.3 ! 27.5 ! 16.6 ! 16.3 ! 17.8 ! 16.2 ! 17.4 ! 16 | 4,331
4,613
4,311
4,714
5,112
4,369
6,215
5,271
4,433
3,992
4,719
4,461
3,630
4,022
4,177 | | UP | 110 S
100 S | 400 W
110 W | 3517 !
3058 | 940
1105 ! | 16.3 !
14.2 | 4,698
5,526 ! | notes: Values are average of all measurements at each location. symbols: ** Indicates average of more than one set of paired data. ! Indicates value equals or exceeds ssa. Table 2. List of SDF Locations with Statistically Significant Activity Levels. [&]quot;Statistically significant activity" (ssa) is defined as a radioactivity level that is equal to or greater than ninety-five percent of the values expected from a normal distribution of measurements of background radioactivity for the surrounding uncontaminated area. ² "radioactive contamination" is defined as exceding the normal ambient gamma radioactivity level at one meter height by more than 5 uR/hr -- the criteria limit for this project. ³"marginally elevated activity" is defined as a radioactivity level that is higher than the statistically significant activity (ssa) limit, but still within the upper five percent of the statistical range of normal background radiation. As can be seen in the table, five locations in the Lower Pond Basin had elevated gamma activity, and one of these locations measured 27.5 uR/hr, clearly indicating the presence of radioactive contamination in that area. One location in the Upper Pond Basin was found to have a marginally elevated beta activity without an accompanying elevation in gamma activity. Because this location is adjacent to the boundry of the Lower Pond Basin, it will be tentatively assumed that this measurement indicates the presence of at least some contaminants in the Upper Pond Basin. The other eleven scattered locations that were found to have marginally elevated gamma activity levels were all adjacent to Chatsworth geological formation. These nearby siltstone rock formations are known to have a higher natural radioactivity level than the alluvium that predominates in the SDF site (reference 3). Thus, except for the contaminated locations in the Upper and Lower Pond Basins, the survey data were statistically within the range of normal background radiation levels observed in naturally occurring, uncontaminated soil and rocks in the surrounding region. Nevertheless, all of the locations in Table 2 should be considered candidates for additional soil sample analysis. The data supports the continued designation of the Upper and Lower Pond Areas as Radiological Material Management Areas (RMMAs). Since the results of this survey agree with the results of previous surveys at this site (reference 2), and no evidence was found in the surface beta and ambient gamma data of this survey to indicate that migration of radioactive cantaminants has occurred, the areas outside the two pond basins need not be designated as RMMAs at this time. If further soil sampling or field surveys in the other areas reveal the presence of radioactive contamination, then the status of these other areas, or subsets of areas may require reconsideration. Excavation or material removal in the areas outside of the two pond basins should be regularly monitored by the site RP&HPS technician to assure that no previously undetected radioactive materials are being uncovered. Likewise, all excavated area bottoms and the dirt being used for backfill should be surveyed before the excavated areas are refilled. All of the raw data, spreadsheet tables from the data analysis, maps, field notebook and other supporting material for this survey will be kept in the T886 file at RP&HPS, Bldg 100. ## 3. Identification of Facility: The Sodium Disposal Facility (SDF) is located at the west end of Rockwell International's Santa Susana Field Laboratory (SSFL). The SDF is commonly called the "Old Sodium Burn Pit", and is designated as SSFL site T886. The facility occupies the high ground of an alluvial flat that is roughly triangular in shape, and about two acres in area. The site is bordered by siltstone formations on two sides, which come together at the north end of the site to form a blunted apex to the triangle. Site drainage is through the siltstone narrows at this apex. The location of the SDF site within SSFL Area IV is mapped in Figure 1. Figure 1. SSFL Area IV map showing location of the SDF site. The SDF was once used as a disposal site for sodium and sodium-potassium alloys, and combustible materials from US DOE/AEC nuclear programs. The disposal activity was mostly confined to a concrete pool, and two open-field pits that are referred to as the Upper Pond Basin and the Lower Pond Basin. Previous radiological survey and decontamination work have been done at the site. A more detailed description of the site's physical location, its relevant operational history, and a discussion of previous survey and decontamination efforts can be found in reference 2. #### 4. Survey Scope: The radiological survey of this report was done to establish the baseline ambient radiation levels across the entire SDF site in preparation for site
remediation. The data from the survey are intended to be used to identify areas where radioactivity exists at levels above normal background. The survey included measurements of ambient gamma radiation at 1-m height above the ground, and pancake-GM measurements of the soil surface activity at 1-cm above the ground. The pancake-GM detectors are primarily sensitive to beta radiation, which was the intended use, but also have lessened sensitivity to gamma and alpha radiation. For purposes of this report, total activity measured by the pancake-GM detectors will be referred to as "beta" activity. #### 5. Survey Procedures: The survey procedures are detailed in reference 1, as amended in the field. Where it was necessary to change the original procedures, red-line notations were made on a control document. The changed procedure document will be published as Revision A to the original. What follows is a brief description of the SDF baseline survey procedures. Prior to the start of the survey, the SDF site was overlayed by a 10-ft interval, North/South, East/West grid. Wood stakes were set at the intersection of the grid lines, and survey measurements were made at the location of the stakes. Where stake-points were lost or obliterated, the intersect locations were recreated using measuring tapes. For analysis of the data, the facility was further sectioned into natural physical areas -- Lower Pond Basin, Upper Pond Basin, West Area, Northwest Area, Northeast Area, and East Area. The locations of these areas within the site are illustrated in Figure 2. The survey consisted of measurements of detected activity counts during a 1-minute time interval. All measurements were made with paired sets of independent survey instruments -- two 1-inch NaI gamma detectors at 1-m height, and two pancake-GM beta detectors at 1-cm from the ground surface. To insure precision in reproducing the 1-m height at each location, the two gamma detectors were mounted on a fixture made from a pvc pole and assorted pvc fittings. Likewise, the pancake-GM detectors were individually fitted with pvc collars that lifted the detectors 1-cm above the surface, with a lead weight attached to each detector backside to hold them firmly in place. Details about the fixtures can be found in reference 1. During the survey, the readings from the independent instrument pairs were compared for consistency and reasonableness. Anomalous or disparate readings at any time caused the survey team Figure 2. SDF Site Map Showing Area Subdivisions. to momentarily interrupt the survey to check for instrument malfunctions (especially cable problems), and to retake the measurements. Several such problems were encountered during the survey. All of the data from each location were ultimately used in the analysis of the survey results. A single gamma, and a single beta activity measurement for each location was determined finally as the average of all of the measurements from each set of paired instruments, although all of the individual measurements were recorded and analyzed seperately. All data were recorded on designated data record sheets by site location coordinates. Time and date were also recorded, along with notes about the character of the location (ie: "on top of Berm", "on road fill", "location of drain ditch", "in lower pond", etc); notes about the measurement environment (ie: "on grass", "on imported road dirt", "cement", "near rock cliff", etc.); and notes about instrument behavior (ie: "wide range between readings", "reading very sensitive to location", etc). Instrument performance was monitored throughout the survey by regular checks at a designated location in a canyon isolated from, but near the SDF site. With reference to the SDF Site coordinate system, the instrument performance checks were done at location (103S, 52E). The performance checks included measuring the instrument response to the ambient background radiaton level at the check location, and measuring the instrument response to a lowlevel check source. The activity of the check sources were chosen to test instrument response near the anticipated statistically significant activity (ssa) level. The checksources each consisted of Marinelli beakers filled with reagent grade KCl salt. The two checksources were mounted in a fixture made from pvc pipe fittings, which allowed the detectors to be checked without removing them from their survey fixtures. The design allowed one gamma detector and one beta detector to be associated with each checksource in a rigid fixture, and all instruments could be checked simultaneously. Specific details about the instrument checksources, and the hardware used for the performance checks are given in reference 1. #### 6. DATA ANALYSIS: All of the data were entered into a database (Microsoft Works), and normalized for detector efficiency factors and geometry. Statistical analysis was then performed on the data using Lotus (ver 2.01) spreadsheets. The data were first evaluated for measurement agreement between paired instruments, then inspected for reasonableness, and for the presence of outliers. The distribution of the data was compared to Gaussian normal distribution on a computer analysis program (RDSRVY) developed by the RP&HPS group. The resulting plots (Figures 3 & 4) were inspected for features that might indicate the presence of nonnormal data distribution (ie: measurements that are biased due to systematic or sensitivity errors, or due to the presence of contamination). The natural ambient gamma background activity value for the site was determined by compiling together all of the gamma data from both gamma instruments from the entire survey, ranking the data by amplitude, and selecting the median value. It was felt that, given the large amount of data collected during the survey, this method would be the least susceptable to perturbation by data extremes at either end of the range, and would thus produce the most accurate estimate of the average value. The data from the beta instruments was similarly treated. This method produced an estimate of the natural background radioactivity for ambient gamma (2966 cpm), and for surface beta (4207 dpm/100cm2) that were clearly representative for the area. With the large database from the whole site (most of which is known to be uncontaminated from previous surveys), it was decided that the most representative estmate of the statistically significant activity (ssa) level for the survey would be best obtained by using the actual standard deviation for the total set of data in the calculation. Recall that the ssa is the activity level at which there is a 95% probability that the data is not part of the normal scatter in background readings, and thus represents a possible detection of the presence of contamination. Note also that there is a 5% probability that this same measured activity level <u>IS</u> part of the normal scatter in background radiation. Finally, the mean value for the data was calculated so that it could be compared to the median value. A large disagreement between these two values would be a possible indicator that there are extremes of data in the data set, or that a portion of the data might be distributed differently than the Gaussian normal distribution (a possible indicator of low-level contamination). This statistical analysis was performed for the total data set for each instrument, and for the combined (averaged) data for each location. The data were then sorted by SDF area location, and a similar statistical analysis was performed for each area. Seperate ssa values were also calculated from each area 's subset of data so that the results from each area could be compared to the results from the whole site. #### 7. SURVEY RESULTS: A statistical summary of the overall results of the SDF survey was presented in Table 1, and a list of all of the SDF locations with statistically significant activity was presented in Table 2, both in section 2 of this report. The averaged radioactivity levels for each location on the 10-ft survey grid in each of the SDF areas are tabulated by area in the tables that follow in this section. The tables present the data in coordinate-location format, with all of the coordinates referring to distance (in feet) from the site reference surveyor's brass monument: For most locations, the listings show the average of a single set of paired instrument readings. An asterisk (*) after the location coordinate indicates that the values given are averaged from multiple sets of measurements -- at least two sets of paired instrument readings. An exclamation point (!) after any of the measurement values indicates that it equals or exceeds the statistically significant activity level. Eight of the survey grid points fell along the site's cement diversion drainage channel (which serves to keep upslope water runoff from running onto the pond areas), and these locations were indicated by a letter "d". Also, five locations in the Northeast Area (indicated by the notation "obs") were obstructed by large utility bins, and thus could not be directly surveyed (the perimeter of each of the bins was checked, and determined to be indistinguishable from the rest of the area's measurement population, however). Recall that the site background radioactivity level (BkGd) and ssa are calculated from the total survey data set. For each area, ssa values have also been calculated from just the area data, and these values, along with a statistical summary of the data are presented so that the radiological character of each area can be compared as a whole to other areas, and to normal background distributions. The data are also presented in the format of individual area maps, to show the distribution of radioactivity levels across the site, and to show the locations that equal or exceed ssa. 7.1. Overall Survey Data Distribution: The distribution of the data from the entire SDF survey were plotted on a
probability scale against a Gaussian cumulative distribution function using a radiation survey analysis program (RDSURVY). The result of this analysis are shown in Figure 3, for gamma exposure, and Figure 4, for beta activity. Figure 3. Cumulative Probability Plot of Gamma Data vs. Gaussian Normal Distribution. Figure 3 shows that the 1-m height gamma exposure data contains a high reading (from the lower pond area) that stands out from the main body of data as probable contamination. A small cluster of slightly high readings that branch off at the top end of the distribution curve all come from measurements in close proximity to the siltstone rock formations. These formations contain mineral uranium and thus have a higher natural radioactivity level than the loose soil which covers most of the SDF site (reference 3). The main body of exposure data falls closely along the Gaussian distribution curve, which means they are distributed approximately as one would expect from normal background radiation. Figure 4. Cumulative Probability Plot of "Beta" Data vs. Gaussian Normal Distribution. Figure 4 shows that the pancake-GM beta activity readings are also closely distributed along the Gaussian distribution curve, which means they are distributed approximately like one would expect from normal background radiaton. There are no unusually high readings, although there is one outlier from the Lower Pond Basin that corresponds to the contaminated location registered in the gamma data. The other site location having a surface beta activity near ssa, in the Upper Pond Basin, appears at the high end of Gaussian normal distribution in this plot, and is thus ambiguous as an indicator of contamination. 7.2. Lower Pond Basin: A statistical summary of the Lower Pond Basin survey results are presented in Table 3-1. SSA values have been estimated from the Lower Pond Basin data so the area data can be compared to the ssa values determined for the overall SDF site. The averaged radiation levels at each location on the sample grid in the Lower Pond Basin are presented in Table 3-2. The radiation levels for each 10-ft grid interval are shown in map format in Figure 5 (Gamma Activity), Figure 6 (Gamma Exposure), and Figure 7 (Beta Activity). The survey found five locations in the Lower Pond Basin having statistically significant radioactivity levels. These locations are mapped in Figures 8 (Gamma Exposure), & 9 (Beta Activity). One of the locations measured about twice normal background (27.5 uR/hr) for gamma, and substantially elevated above background (6215 dpm/100cm2) for surface beta; for both gamma and beta, these were the highest readings recorded during the SDF survey. The other four locations in this area measured gamma activity levels just marginally above the normal background. Additional topological renderings of the exposure data are presented in isocontour format in Figures 10 & 11. Figure 10 presents the gamma exposure data expressed as an isocontour relief topography shown in isometric view. This format emphasizes the physical distribution of the contaminated area. Figure 11 presents the gamma exposure data as an isocontour map shown in plan view. | LOWER
POND
AREA
SUMMARY | median
mean
sdev
max
min
n | - | 3006
3101
3301
338
5914
2864
95 | AVG BETA
a 1-cm(dpm)

809
837
114
1243
602
95 | AVG GAMMA
EXPSR (uR/hr)

14.0
14.4
1.6
27.5
13.3
95 | AVG BETA
(dpm/100cm2)
4050
4168
552
6215
3009
95 | |----------------------------------|---|---|---|---|---|---| | ssa based
on lower
area | pond
data: | = | 3006
+ 786
3792 | 809
+ 265
1074 | 14.0
+ 3.7
17.7 | 4050
+ 1284
5334 | | ssa based
on total
survey | BkGd
data: | = | 2966
+ 523
3489 | 841
+ 294
1181 | 13.8
+ 2.4
16.2 | 4207
+ 1291
5498 | Table 3-1. Statistical Summary of Lower Pond Basin Survey Results. Table 3-2. SDF Lower Pond Basin: Averaged Radiation Levels at Each Location on the 10-ft Sample Grid. | | • | | | | | | | | | | | | | | |----------|--------------|----------------|-------------|------------------------|-------------------------|----------------------------|--------------------------|----------|----------------|----------------|-------------------------|-------------------------|----------------------------|-------------------------| | | | | | | | el at Each Loc | stion | | LOWER | POND BASIN | area: Aver | oged Red Lev | el at Each Loca | ntion | | ARE | A COOR | - | IST
IORD | AVG GUON
a 1-m(cpm) | AVG BETA
a 1-cm(dpm) | AVG GAMMA
EXPSR (UR/Hr) | AVG BETA
(DPM/100CH2) | AREA | NORTH
COORD | WEST
COORD | AVG GAMMA
3 1-m(cpm) | AVG BETA
2 1-cm(dpm) | AVG GAMMA
EXPSR (uR/Hr) | AVG BETA
(DPN/100CH2 | | LP
LP | 30 i | | 0 4 | 2920 | 777 | 13.6 | 3887 | LP | 50 s | 220 W • | 3017 | 764 | ***** | ***** | | Ü | 20 | | 0 W | 2910
2924 | 634
687 | 13.5 | 3169 | LP | 50 \$ | 210 W * | 2928 | 700 | 14.0
13.6 | 3753
3433 | | LP | 20 1 | | ōū | 2931 | 746 | 13.6 | 3435 | LP | 50 s | | 2964 | 783 | 13.8 | 3433
4255 | | LP | 20 1 | 20 | 0 W | 2906 | 628 | 13.6
13.5 | 3732 | rs
Fe | 50 s
50 s | | 3037 | 981 | 14.1 | 4696 | | LP | 20 1 | | 0 W | 2888 | 783 | 13.4 | 3142
3915 | LP
LP | 50 S | 180 W * | 3089 | 996 | 14.4 | 4419 | | LP
LP | 50 F | | 8 W | 3024 | 751 | 14.1 | 3753 | Ū. | 50 S | 160 w • | 2997
3089 | 927
1004 | 13.9 | 4506 | | Ü | 10 N | | 0 W | 2918
3088 | 820 | 13.6 | 4101 | LP. | | | 3160 | 989 | 14.4
14.7 | 5383 | | LP | 10 N | | ŭ | 2956 | 804
857 | 14.3 | 4019 | LP | 50 s | 140 w • | 3305 | 940 | 15.4 | 4541
4574 | | LP | 10 N | |) W | 2984 | 756 | 13.7
13.9 | 4287
3781 | LP
LP | 50 S | 130 W • | 3494 ! | 899 | 16.2 ! | 4433 | | LP
LP | 10 N | | 3 W | 2922 | 645 | 13.6 | 3223 | ĹP | 60 S | 210 W
200 W | 3009
3042 | 738 | 14.0 | 3691 | | LP
LP | 10 N | |) u | 2958 | 777 | 13.7 | 3886 | فآ | 60 S | 190 W | 3042
3037 | 714
836 | 14.1 | 3571 | | ĹP | 10 N | |) W
I U | 2959
3185 | 655 | 13.7 | 3275 | LP | | 180 W | 3043 | 898 | 14.1
14.1 | 4179 | | LP | 10 N | | | 3110 | 1055
974 | 14.8 | 5273 | LP | 60 S | 170 W | 2961 | 729 | 13.8 | 4490
3647 | | LP | 10 N | 150 | l W | 3023 | 852 | 14.4
14.0 | 4872
4259 | LP
LO | 60 S | 160 W | 2983 | 925 | 13.9 | 4624 | | LP
LP | 0 N | | | 3037 | 676 | 14.1 | 3382 | LP
LP | 60 S
60 S | 150 W
140 W | 3149 | 984 | 14.6 | 4919 | | LP | 0 N
0 N | | | 2975 | 602 | 13.8 | 3009 | Ü | 70 s | 220 W | 3133
2898 | 966
820 | 14.6 | 4829 | | Ü | C N | 200 | | 2946
3006 | 708 | 13.7 | 3538 | LP | | 210 W | 3121 | 721 | 13.5
14.5 | 4099 | | LP | G N | 190 | | 2956 | 719
778 | 14.0
13.7 | 3595 | LP | | 200 W | 3075 | 744 | 14.3 | 3607
3720 | | LP | 0 N | 180 | | 3054 | 767 | 14.2 | 3891
3833 | LP
LP | | 190 W | 2864 | 788 | 13.3 | 3939 | | LP
LP | 0 N | 170 | | 3743 | 1022 | 17.4 1 | 5112 | LP | | 180 W
230 W | 2869
2936 | 727 | 13.3 | 3633 | | LP | 0 H | 160
150 | | 3315 | 836 | 15.4 | 4180 | Ü | | 220 W | 2904 | 882
884 | 13.6 | 4612 | | LP | 10 S | 240 | | 3116
2987 | 1059
825 | 14.5 | 5294 | LP | 80 S | | 2904 | 735 | 13.5
13.5 | 4421
3675 | | LP | 10 S | 230 | ¥ | 3039 | 756 | 13.9
14.1 | 4127 | LP | | 200 W * | 2 899 | 853 | 13.5 | 4124 | | LP | 10 S | 220 | | 3016 | 810 | 14.0 | 3780
4050 | ••• | | | | | ***** | | | LP
LP | 2 01 | 210 | | 2939 | 788 | 13.7 | 3938 | | | | | | | | | LP | 10 S
10 S | 200
190 | | 2996 | 660 | 13.9 | 3300 | | | | | | | | | ÜP . | | 180 | | 3117
3322 | 778
809 | 14.5 | 3888 | | | | | | | | | LP | 10 S | | | 3322 | 836 | 15.4
15.4 | 4046 | | | | | | | | | LP | | 160 | | 3276 | 1006 | 15.2 | 4180
5031 | | | | | | | | | LP
LP | 10 S
10 S | 150
140 | | 3089 | 885 | 14.4 | 4423 | | | | | | | | | Į. | 20 s | 230 | | 2906
2988 | 948
852 | 13.5 | 4740 | | | | | | | | | LP | 20 s | 220 | | 2964 | 751 | 13.9
13.8 | 4260 | | | | | | | | | P | 20 \$ | 210 | | 3018 | 787 | 14.0 | 3754
3937 | | | | | | | | | LP
LP | 20 s | 200 | | 2944 | 841 | 13.7 | 4207 | | | | | | | | | i. | 20 s
20 s | 190
180 | | 3207 | 899 | 14.9 | 4497 | | | | | | | | | LP . | 20 s | 170 | | 3512 !
3215 | 874
921 | 16.3 ! | 4369 | | | | | | | | | LP | 20 s | 160 | ¥ | 3035 | 858 | 14.9
14.1 | 4606 | | | | | | | | | | 20 s | 150 | | 2923 | 878 | 13.6 | 4290
4392 | | | | | | | | | | | 140
230 | | 3004 | 900 | 14.0 | 4501 | | | | | | | | | | | 220 | | 2994 :
2983 | 1066 | 13.9 | 5329 | | | | | | | | | P | 30 s | 210 | d. | 2994
2994 | 858
799 | 13.9 | 4288 | | | | | | | | | | | 200 1 | | 3104 | 847 | 13.9
14.4 | 3995
4234 | | | | | | | | | | | 190 | | | 900 | 15.8 | 4501 | | | | | | | | | | | 180 t
170 t | | | 243 | 27.5 ! | 6215 ! | | | | | | | | | P | | 160 | | | 804
831 | 15.2 | 4022 | | | | | | | | | P : | 30 s | 150 L | 1 | | 847 | 14.4
14.3 | 4154 | | | | | | | | | | TA - | 140 L | | 3041 | 809 | 14.1 | 4235
4045 | | | | | | | | | | 30 S
40 S | 130 L | | | 906 | 14.3 | 4529 | | | | | | | | | | 10 s | 210 L | 1 | | 762
770 | 13.4 | 3808 | | | | | | | | | P 4 | 10 s 2 | 200 W | | | 729
751 | 13.8 | 3647 | | | | | | | | | • 4 | 0 S | 190 W | | | 836 | 13.8
14.5 | 3755
4170 | | | | | | | | | | 0 5 1 | | | 3122 | 788 | 14.5 | 4179
3939 | | | | | | | | | | 0 S 1 | 70 u | | 3157 | 248 | 14.7 | 4738 | | | | | | | | | | 0 S 1 | | - | | 280 | 16.1 | 4396 | | | | | | | | | 4 | 0 s 1 | 40 W | | | 154
149 | 16.6 ! | 5271 | | | | | | | | | 4 | 0 S 1 | 30 W | | |
173 | 16.0
16.1 | 4743
4363 | | | | | | | | | | | | | | | | -203 | | | | | | | | lp3jun.wk1, 3aug92, 11:36a. Figure 5. Map of Lower Pond Ambient Gamma Activity. 3489 cpm n n ^{*} note: Five locations with statistically significant gamma exposure were found in the lower pond area. Figure 6. Map of Lower Pond Gamma Exposure. | LOWER POND BASIN: AMBIENT GAMMA EXPOSURE @ 1-m (uR/hr | •) | |---|------------------| | . west coordinate: | | | 240 230 220 210 200 190 180 170 160 150 | 140 130 | | ···· ··· ··· ··· ··· ··· ··· ··· ··· · | | | north | | | coordinate: 30 13.6 13.5 | | | 20 13.6 13.6 13.5 13.4 14.1 13.6 | | | 10 14.3 13.7 13.9 13.6 13.7 13.7 14.8 14.4 14.0 | | | (-n = south) 0 14.1 13.8 13.7 14.0 13.7 14.2 17.4 15.4 14.5 | | | -10 13.9 14.1 14.0 13.7 13.9 14.5 15.4 15.4 15.2 14.4 | 13.5 | | -20 13.9 13.8 14.0 13.7 14.9 16.3 14.9 14.1 13.6 | 14.0 | | -30 13.9 13.9 14.4 15.8 27.5 15.2 14.4 14.3 | 14.1 14.3 | | -40 13.4 13.8 13.8 14.5 14.5 14.7 16.1 16.6 | 16.0 16.1 | | -50 14.0 13.6 13.8 14.1 14.4 13.9 14.4 14.7 | 15.4 16.2 | | -60 14.0 14.1 14.1 13.8 13.9 14.6 | 14.6 | | -70 13.5 14.5 14.3 13.3 13.3 | | | -80 13.6 13.5 13.5 | | | LOMER POND BASIN TOTAL S | | | | SDF SURVEY | | | POSURE @ 1-m | | avg (uR/hr) avg (u | IK/NC) | | median = 14.0 BkGd = median | = 13.8 | | | = 13.8
= 13.9 | | mean = 14.4 mean
sdev = 1.6 sdev | | | 97 F | = 1.0 | | max ≈ 2/.> max | - 27 6 | | min = 13.3 ssa = BkGd + (2.4) min | = 27.5
= 9.8 | ^{*} note: Five locations with statistically significant gamma exposure were found in the lower pond area. Figure 7. Map of Lower Pond Surface Beta Activity. LOWER POND BASIN: AVERAGE PANCAKE-GM "BETA" ACTIVITY & 1-cm (dpm/100cm2) west coordinate: | | | | | | | MESC CC | Oi Gillat | | | | | | | |--------------|-----|--------|---------|---------|-------|---------|-----------|-------|---------|--------|--------|---------|--------| | | | 240 | 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | | | | **** | •••• | **** | | | **** | | | | | **** | | | north | 30 | | | | | | 3,887 | 3,169 | | | | | | | | 20 | | | 3,435 | 3,732 | 3,142 | 3,915 | 3,753 | 4,101 | | | | | | | 10 | | 4,019 | 4,287 | 3,781 | 3,223 | 3,886 | 3,275 | 5,273 | 4,872 | 4,259 | | | | (-n = south) | 0 | | 3,382 | 3,009 | 3,538 | 3,595 | 3,891 | 3,833 | 5,112 | 4,180 | 5,294 | | | | | -10 | 4,127 | 3,780 | 4,050 | 3,938 | 3,300 | 3,888 | 4,046 | 4,180 | 5,031 | 4,423 | 4,740 | | | | -20 | | 4,260 | 3,754 | 3,937 | 4,207 | 4,497 | 4,369 | 4,606 | 4,290 | 4,392 | 4,501 | | | | -30 | | 5,329 | 4,288 | 3,995 | 4,234 | 4,501 | 6,215 | 4,022 | 4,154 | 4,235 | 4,045 | 4,529 | | | -40 | | | 3,808 | 3,647 | 3,755 | 4,179 | 3,939 | 4,738 | 4,396 | 5,271 | 4,743 | 4,363 | | | -50 | | | 3,753 | 3,433 | 4,255 | 4,696 | 4,419 | 4,506 | 5,383 | 4,541 | 4,574 | 4,433 | | | -60 | | | | 3,691 | 3,571 | 4,179 | 4,490 | 3,647 | 4,624 | 4,919 | 4,829 | | | | -70 | | | 4,099 | 3,607 | 3,720 | 3,939 | 3,633 | | | | | | | | -80 | | 4,412 | 4,421 | 3,675 | 4,124 | | | | | | | | | | | LOW | ER POND | BASIN | | | | | • | | TOTA | L SDF S | URVEY | | | | 1-cm | BETA A | CTIVITY | | | | | | | 1-cm | BETA AC | TIVITY | | | | avg | dpm/10 | 0cm2 | | | | | | | avg | dpm/10 | 0cm2 | | | | median | = | 4,050 | | | | | | BkGd = | median | = | 4,207 | | | | mean | = | 4,168 | | | | | | | mean | = | 4,200 | | | | sdev | = | 552 | | | | | | | sdev | - | 555 | | | | max | = | 6,215 | | | | | | | max | = | 6,215 | | | | min | = | 3,009 | | ssa | = | BkGd | + (1,29 | 71) | min | = | 2,325 | | | | n | = | 95 | | * ssa | = | 5,498 | dpm/100 | cm2 | n | = | 811 | ^{*} note: One location with statistically significant beta activity was found in the lower pond area. Figure 8. Map of Lower Pond Locations With Statistically Significant Gamma Exposure. LOWER POND BASIN: LOCATIONS WITH STATISTICALLY SIGNIFICANT GAMMA EXPOSURE @ 1-m (uR/hr above ssa) | | | | | | , | west co | ordina | te: | | | | | | |--------------|------|---|---------|--------|-----|------------|--------|----------|------|---------|----------|---------|--------------------| | | | 240 | 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | | | | | | | | | | | | | | | | | north | | | | | | | | | | | | | | | coordinate: | 30 | | | | | | • | • | | • | 20 | | | • | • | • | • | • | • | 10 | | • | • | • | • | • | • | • | • | • | | | | (| • | | | | | | | | | | | | | | (-n = south) | 0 | | • | • | • | • | • | • | 1.2 | • | • | | | | | -10 | | | | | | | | | | | | | | | - 10 | • | • | • | • | • | • | • | • | • | • | • | | | | -20 | | | | | | | 0.1 | | | | | | | | | | • | • | • . | • | • | 0.1 | • | • | • | • | | | | -30 | | • | | | | | 11.3 | | | | | | | | | | | | | · | · | | • | • | • | | • | | | -40 | | | • | | | | | | | 0.4 | | | | , | | | | | | | | | | | | | | | | -50 | | | | • | | | | | | | | assa | | | | | | | | | | | | | | | | | | -60 | | | | • | | • | • | • | | • | -70 | | | • | • | • | • | • | -80 | | • | • | • | • | POND B | | | | | | | | | SDF SUR | | | | | GAMMA EX | | a) 1-m | | | | | | G. | AMMA EXI | | a 1-m | | | | | uR/hr) | | | | | | | | | uR/hr) | | | | | median | | 14.0 | | | | | _ | 1.a.i | | | | | | | mean | = | 14.4 | | | | | В | kGd = m | | = | 13.8 | | | | sdev | | 1.6 | | | | | | | mean | = | 13.9 | | | | max | - | 27.5 | | | | | | | sdev | | 1.0 | | | | min | - | 13.3 | | ssa | = (| BkGd + (| 2 41 | | max | = | 27.5
9.8 | | | | n | = | 95 | | ssa
ssa | | 16.2 u | | | min | | 9.8
81 2 | | | | • | - | ,, | | 330 | - | 10.2 U | MIH. | | n | = | 012 | ^{*} note: Five locations with statistically significant gamma exposure were found in the lower pond area. Figure 9. Map of Lower Pond Locations With Statistically Significant Beta Activity. LOWER POND BASIN: LOCATIONS WITH STATISTICALLY SIGNIFICANT PANCAKE-GM "BETA" ACTIVITY @ 1-cm (dpm/100cm2 above ssa) | | | | | | , | est co | ordinat | e: | | | | | | |--------------|-----|--------|---------|---------|-----|--------|---------|--------|----------|---------|--------|---------|-------| | | | 240 | 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | | | | | | | | | | | | | | | | | north | | | | | | | | | | | | | | | coordinate: | 30 | | | | | | | • | 20 | | | • | • | • | • | • | • | | | | | | | | | | - | | | | | | | | | | | | 10 | | • | • | • | • | • | | • | • | • | | | | | | | | | | | | | | | | | | | (-n = south) | 0 | | • | • | • | • | • | • | • | • | • | -10 | • | • | • | • | • | • | • | • | • | • | • | | | | | | | | | | | | | | | | | | | -20 | | • | • | • | • | • | • | • | • | • | • | | | | | | | | | | | | | | | | | | | -30 | | • | • | | • | • | 717 | • | • | • | • | • | | | | | | | | | | | | | | | | | | -40 | | | • | • | • | • | • | • | | • | • | • | | | | | | | | | | | | | | | | | | -50 | | | • | • | • | | • | • | • | | • | • | | | | | | | | | | | | | | | | | | -60 | | | | • | • | | • | • | • | • | • | | | | | | | | | | | | | | | | | | | -70 | | | • | | • | | • | -80 | | • | | • | • | LOWE | R POND | BASIN | | | | | | | TOTAL | SDF SL | RVEY | | | | 1-cm | BETA A | CTIVITY | | | | | | | 1-cm 8 | ETA ACT | YTIVI | | | | avg | dpm/100 | Ocm2 | | | | | | | avg | dpm/100 | cm2 | | | | | | • • • | | | | | | | | | | | | | median | = | 4,050 | | | | | 8 | kGd = m | edian | = | 4,207 | | | | mean | = | 4,168 | | | | | | | mean | = | 4,200 | | | | sdev | = | 552 | | | | | | | sdev | = | 555 | | | | max | = | 6,215 | | | | | | | max | = | 6,215 | | | | min | = | 3,009 | | ssa | = | BkGd + | (1,291 |) | min | = | 2,325 | | | | n | = | 95 | | * ssa | = | 5,498 | ipm/100c | m2 | n | = | 8.11 | ^{*} note: One location with statistically significant beta activity was found in the lower pond area. lp3jun.wk1, 3aug92, 15:30p. Figure 10. Isoplot of Lower Pond Gamma Exposure -- Isometric View Figure 11. Isoplot of Lower Pond Gamma Exposure -- Map View 7.3 Upper Pond Basin: A statistical summary of the Upper Pond Basin survey results are presented in Table 4-1. SSA values have been estimated from the Upper Pond Basin data so the area data can be compared to the overall site data. The averaged radiation levels for each location on the sample grid for the Upper Pond Basin are presented in Table 4-2. radiation levels for each 10-ft grid interval are shown in map format in Figure 12 (Gamma Activity), Figure 13 (Gamma Exposure), and Figure 14 (Beta Activity). The survey found one location in the Upper Pond Basin having statistically significant surface beta This reading was anomalous for the Upper Pond Area, activity. compared to the rest of the measurements, but was only marginally elevated above ssa level. In terms of the overall SDF site survey data, the anomalous value falls at the high end of, but still within, the range of normal background radiation. The gamma activity for this same location was at normal background, and this was the only location found in the total SDF site survey that showed an elevated surface beta activity without a concomitant elevation in gamma activity. Thus, the meaning of this measurement in terms of defining a potentially contaminated point is ambiguous. Figure 15 shows the location of this elevated beta reading within the Upper Pond Basin. All other beta and gamma readings in the upper pond basin were indistinguishable from normal background. | UPPER | | | VG GAMMA | AVG BETA
a 1-cm (dpm) | AVG GAMMA
EXPOSURE
(UR/Hr) | AVG BETA
(dpm/100cm2) | |-----------|---------|---|----------|--------------------------
----------------------------------|--------------------------| | POND | median | = | 2954 | 873 | 13.7 | 4,362 | | AREA | | = | 2957 | 864 | 13.7 | 4,306 | | | mean | | | | | | | SUMMARY | sdev | 2 | 73 | 114 | 0.3 | 566 | | | max | = | 3127 | 1,105 | 14.5 | 5,526 | | | min | = | 2733 | 508 | 12.7 | 2,542 | | | n | = | 78 | 78 | 78 | 78 | | | | | | | | | | ssa based | | | 2954 | 873 | 13.7 | 4,362 | | on upper | pond | | + 170 | + 265 | + 0.7 | + 1,317 | | | a data: | = | 3124 | 1,138 | 14.4 | 5,679 | | | | | ••••• | | | | | ssa based | BkGd | = | 2966 | 841 | 13.8 | 4,207 | | on tota | i | | + 523 | + 258 | + 2.4 | + 1,291 | | | y data: | = | 3489 | 1,099 | 16.2 | 5,498 | | | | | | ., | | | | | | | | | | | Table 4-1. Statistical Summary of Upper Pond Basin Survey Results Table 4-2. Upper Pond Basin -- Averaged Radiation Levels at Each Survey Location. | 652,4 | 1.21 | 878 | 2824 | | W OFF | 2 02L | ď۵ | |--------------------------|--------------|---------------------|---------------------------|---|----------------|------------------|------------------| | 720 7 | 2.51 | 708 | 8985 | | u osr | 2 021 | ٩n | | 3,520 | 7.21 | 702 | 1682 | | 130 M | S 051 | ďΩ | | 368,E | 2.2r | Σ99 | 706Z
798Z | | 7 071
120 M | 2 021 | dΩ
dΩ | | 2,833
3,313 | 1.EI
E.EI | 787
533 | 1585 | | N 091 | 2 021 | qU
an | | 110'7 | 7.51 | 508 | EE7S | | N 021 | 2 021 | ďn | | 875'7 | เ.ยเ | 016 | 1185 | | W 081 | S OSI | ٩n | | 2,932 | 9-21 | 984 | 2923 | | M OLL | 5 071 | ďΠ | | 886,5 | Z.Er | 867 | 8682 | | U OSI | S 071 | d۵ | | Z88 '7 | しつりし | 926 | 302¢ | | W DEI | S 071 | an | | 2,949 | 9.21 | 062 | 5990 | | M 071 | S 071 | ďΩ | | 708,4 | 1771 | 196 | 2029
S853 | | N 091 | S 071
S 071 | an
an | | 792'7 | 6.Er | 208
278 | 5785
FCOC | | W OY! | | - | | 220'7
725'7 | 2.21
2.21 | 508
568 | 578Z | | W 081 | \$ 071
\$ 071 | an
an | | 298.5 | 8.21 | 277 | 0862 | | M OII | 130 \$ | an
an | | 167'7 | 2.21 | 868 | 9162 | | ISO N | 120 2 | an | | 79L'E | 8.Er | 257 | 6962 | | 130 A | 130 S | ďΩ | | \$25*7 | 0~71 | \$06 | 710E | | N 071 | S OE! | ď۵ | | 2,884 | 2.Er | <i>11</i> 5 | 2903 | | M DSL | 130 S | φŊ | | 2,542 | 2.Er | 802 | 8685 | | N 091 | 2 0Er | qU | | 2°238 | 13.¢ | 99.4
90.4 | 2785
1285 | | W 051 | 2 021 | d∩
d∩ | | 029'7 | 7.Ef | 902
926 | 276Z | | n 061 | 120 2 | an. | | \$66.E | 0.41 | 662 | 2000 | | W OFF | 120 2 | an | | 4,520 | 1.41 | 706 | 3039 | | USC W | S OZI | ďΩ | | 7227 | 13.9 | 788 | 5862 | | 130 M | 150 2 | ďΩ | | 709 7 | 9.Er | 126 | 3000 | | n oti | s osr | ďΩ | | 297'7 | 7.Er | 893 | 2943 | | N OSL | 120 S | qU. | | 081,2 | 8.21 | 1036 | 2960 | | n 091 | 150 2 | qU. | | 2°825
7°726 | 13°¢
13°9 | 998
077 | 2832
2832 | | W OSF | 150 S | qu
qu | | 906'7 | 7.21 | 186 | 7562 | | # 06L | 2 051 | an
an | | 3,640 | 9.51 | 827 | 2938 | | W OFF | S OIL | an | | 292'7 | 1.41 | 278 | 3037 | | ISO M | S OLL | ď | | 68917 | 2-41 | 928 | 1 SOE | | 130 M | S OIT | dn. | | 69015 | 1.41 | 7101 | 2056 | | n Otl | 2 Off | a n | | 255'7 | 7.Er | 116 | 0562 | | M OSL | 2 OFF | qU | | 692"7 | 9.Er | 758 | 2921 | | # 09L | 2 OFF | ΨŪ | | 2°28'£ | 1°71
12°8 | 177
8 2 7 | 879S
2033 | | W OST | S OFF | an
an | | 758 £ | 9.51 | 978 | 266Z | | F 061 | 2 011 | qU
au | | SEL '7 | 2.21 | 758 | 97DE | | Z00 A | S DII | ٩n | | i 925'S | 2.41 | i SOLL | 820E | | M OLL | S 001 | ď٨ | | 578'7 | 1-71 | 696 | 2000 | | 150 M | S 001 | ďΠ | | 3,748 | 9.21 | 057 | 2982 | | 120 A | 2 001 | ďΠ | | 028,4 | 7.Er | 996 | 2952 | | N 071 | 2 00 L | ٩Ü | | 995'7 | 7.Er | 516 | 8762 | | n osi | 2 001 | ďΩ | | 148°7
714°7 | 0"71
1"El | 726
£76 | 2018
2042 | | N 091 | 2 00 f | qU
qu | | 296 . ξ | 2:Σl | 567 | 5762 | | W 081 | 2 001 | qU. | | 250'S | 1.51 | LIDI | 3066 | | M 061 | S 001 | ďN | | Z65'7 | 0"71 | 819 | 305¢ | | 700 M | S DOL | d۱ | | 102,2 | 5.41 | 0701 | 7212 | | 150 n | \$ 06 | ďΩ | | ל ' ל02 | 2.21 | 188 | 2915 | # | N DEF | \$ 06 | ٩U | | 927 7 | 7.51 | 288 | 8785 | | N 07L | S 06 | ďΩ | | 262'7
7'051 | 13.2 | 656
508 | 2993
2834 | | N 051 | S 06
S 06 | qU
qu | | 5,203 | 6"El
0"7l | 1401 | 2002 | _ | W 071 | S 06 | qU
ou | | 3,036 | 9.21 | 209 | S662 | - | U 081 | \$ 06 | ٩n | | 82617 | 14.3 | 986 | ₹80£ | | N 061 | S 96 | ď٦ | | SZT, E | 13.7 | 974 | 9562 | | n 002 | S 06 | ď۵ | | 250 7 | 8.21 | 118 | £7.65 | | 150 m | 2 08 | d٥ | | £75°7 | 5*71 | 606 | ELLE | | 130 n | 2 08 | ٩Ü | | 062 7 | 8.21 | 828 | 996Z | | n Oyl | 2 08 | qU. | | 000'S
LZZ'7 | 1"91
2"El | 1000
128 | 2021
2 86 2 | | N 091 | 2 08
2 08 | an
an | | 221,2 | 13.9 | 1032 | 200S | | 4 07 F | 2 08 | qU. | | LLO'S | 8.51 | 2001 | 0795 | | U 081 | 2 08 | an
G | | 528'7 | 13.5 | 526 | 8985 | | n 061 | 2 08 | ďN | | 2,531 | 9"21 | 902 | 1262 | | ISO M | S OZ | đN | | 092 '7 | 9.21 | 256 | 2920 | | 130 A | 2 07 | d١ | | 579 7 | 8.21 | 626 | 2960 | | N 071 | S 02 | ٩Ŋ | | 807 7 | 7.51 | S88 | 562 | | N OSL | S OZ | qu | | ረረኗ'ን
\$ 90 'ን | 13°6 | ₹18
⋶ 78 | 5662
588 6 | | N 091 | S OZ | q U
qU | | 702,4
705,4 | 7 El
2"7l | 148 | 3886 | | 120 M | S 09 | qU
an | | 200 7 | - /· | - / - | | | | - 0, | ٠., | | | | | | | | | | | (SmoOOf \mqb) | (JH\RU) | 91-cm(dpm) | gj-ig(cbm) | | | :030003 | | | AT38 DVA | EXPOSURE | AT38 DVA | AVG GAMMA | a | TSBV | S/N | 30S | | | ANG GAMMA | | | | | | | .q21:41 ,Senu[Sf ,fak.sabqamqu Figure 12. Map of Upper Pond Ambient Gamma Activity. UPPER POND BASIN AMBIENT GAMMA ACTIVITY @ 1-m (avg cpm) | | | | | | west co | ordinat | e: | | | | | |-----------------|--------|----------|----------|--------|---------|---------|------|----------|---------|-----------|--------------| | | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | | | south | •••• | •••• | •••• | •••• | •••• | •••• | •••• | •••• | •••• | •••• | | | coordinate: -60 | | | | | | | | 3051 | | | | | | | | | | | | | | | | | | -70 | | | | 2894 | 2999 | 2951 | 2960 | 2920 | 2931 | | | | -80 | | 2898 | 2970 | 3002 | 2942 | 3037 | 2966 | 3113 | 2973 | | | | 50 | | 2070 | 2910 | 3002 | 2746 | 3031 | 2700 | 3113 | 2713 | | | | -90 | 2956 | 3084 | 2995 | 3009 | 2993 | 2834 | 2878 | 2915 | 3127 | | | | - 100 | 702/ | 70// | 20/5 | 20/7 | 7010 | | | | | | | | -100 | 3024 | 3044 | 2945 | 2943 | 3018 | 2948 | 2952 | 2985 | 3040 | 3058 | | | -110 | 3079 | 2993 | 2978 | 3033 | 2921 | 2950 | 3026 | 3051 | 3037 | 2938 | | | | | | | | | | | | | | | | -120 | | 2954 | 2932 | 2893 | 2980 | 2943 | 3000 | 2989 | 3039 | 3004 | | | -130 | | 2947 | 2875 | 2851 | 2898 | 2903 | 3017 | 2969 | 2916 | 2980 | | | | | | | | | | | | | | | | -140 | | | 2845 | 2872 | 2923 | 3036 | 2990 | 3024 | 2898 | 2923 | | | -150 | - | | 2811 | 2733 | 2821 | 2864 | 2904 | 2891 | 2898 | 2824 | | | | | | | 2.32 | | 2004 | 2,04 | 207. | 2070 | 2024 | | | | 1 | UPPER PO | OND BAS | IN | | | | | TOTA | NL SDF SL | JRVEY | | | 1-m AM | BIENT GA | MMA ACT | YTIVIT | | | | | 1-m AM8 | HENT GAN | MMA ACTIVITY | | | | | ; cpm) . | | | | | | | (avg cpn | n) | | | median | = | 2954 | | | | | BkGd = m | | = | 2966 | | | mean | = | 2957 | | | | • | - DOW | mean | | 2996 | | | | | | | | | | | | | | median = 2954 BkGd = median = 2966 mean = 2976 mean = 2996 sdev = 73 sdev = 225 max = 3127 max = 5914 min = 2733 min = 2097 n = 78 n = 812/2 ssa = 8kGd + (523) * ssa = 3489 avg cpm ^{*} note: no statistically significant gamma activity was found in the upper pond area. Figure 13. Map of Upper Pond Gamma Exposure. ### UPPER POND BASIN AMBIENT GAMMA EXPOSURE @ 1-m (uR/hr) | | | | | | west co | ordinat | e: | | | | |-----------------|------|------|------|------|---------|---------|------|------|------|------| | | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | | | •••• | •••• | •••• | •••• | •••• | •••• | •••• | •••• | •••• | | | south | | | | | | | | | | | | coordinate: -60 | | | | | | | | 14.2 | | | | -70 | | | | 13.4 | 13.9 | 13.7 | 13.8 | 13.6 | 13.6 | | | -80 | | 13.5 | 13.8 | 13.9 | 13.7 | 14.1 | 13.8 | 14.5 | 13.8 | | | -90 | 13.7 | 14.3 | 13.9 | 14.0 | 13.9 | 13.2 | 13.4 | 13.5 | 14.5 | | | -100 | 14.0 | 14.1 | 13.7 | 13.7 | 14.0 | 13.7 | 13.7 | 13.9 | 14.1 | 14.2 | | -110 | 14.3 | 13.9 | 13.8 | 14.1 | 13.6 | 13.7 | 14.1 | 14.2 | 14.1 | 13.6 | | -120 | | 13.7 | 13.6 | 13.4 | 13.8 | 13.7 | 13.9 | 13.9 | 14.1 | 14.0 | | -130 | | 13.7 | 13.4 | 13.2 | 13.5 | 13.5 | 14.0 | 13.8 | 13.5 | 13.8 | | -140 | | | 13.2 | 13.3 | 13.6 | 14.1 | 13.9 | 14.1 | 13.5 | 13.6 | | -150 | | | 13.1 | 12.7 | 13.1 | 13.3 | 13.5 | 13.4 | 13.5 | 13.1 | | ι | IPPER | POND BASIN | | TOTAL SDF SURVEY | | | | | | |---------|-------|--------------|----|------------------|-------|--------------|-----|--|--| | 1-m AME | IENT | GAMMA EXPOSU | RE | 1-m AMB | IENT | GAMMA EXPOSI | JRE | | | | | av | g (uR/hr) | | | avg (| uR/hr) | | | | | - | | | | •••• | | | | | | | median | = | 13.7 | | BkGd = median | = | 13.8 | | | | | mean | = | 13.7 | | mean | = | 13.9 | | | | | sdev | = | 0.3 | | sdev | 2 | 1.0 | | | | | max | = | 14.5 | | max | = | 27.5 | | | | | min | = | 12.7 | | min | = | 9.8 | | | | | n | = | 78 | | n | = | 812 | | | | ssa = 8kGd + (2.4) ^{*} ssa = 16.2 uR/hr ^{*} note: No statistically significant gamma exposure was found in the upper pond area. Figure 14. Map of Upper Pond Surface Beta Activity. UPPER POND BASIN SURFACE BETA ACTIVITY @ 1-cm (dpm/100cm2) | | | | | | Hect co | ordinat | • | | | | | |--------------------------|----------------------|--------|-------|-------|---------|---------|-------|-------|-------|-----------|---| | | 200 | 190 | 180 | 170 | 160 | 150 | | 170 | 120 | 110 | | | • | 200 | 170 | 100 | 170 | 100 | 150 | 140 | 130 | 120 | 110 | | | | **** | •••• | •••• | •••• | •••• | •••• | •••• | •••• | •••• | •••• | | | south
coordinate: -60 | | | | | | | | 4,207 | | | | | -70 | | | | 4,085 | 4,377 | 4,408 | 4,645 | 4,760 | 3,531 | | | | -80 | | 4,875 | 5,011 | 5,175 | 4,271 | 5,000 | 4,290 |
4,543 | 4,053 | | | | -90 | 3,732 | 4,928 | 3,036 | 5,203 | 4,027 | 4,793 | 4,426 | 4,403 | 5,201 | | | | -100 | 4,592 | 5,057 | 3,962 | 4,714 | 4,871 | 4,566 | 4,830 | 3,748 | 4,845 | 5,526 | | | -110 | 4,135 | 4,230 | 3,854 | 3,790 | 4,269 | 4,553 | 5,069 | 4,689 | 4,362 | 3,640 | | | -120 | | 4,906 | 4,329 | 3,852 | 5,180 | 4,467 | 4,604 | 4,334 | 4,520 | 3,993 | | | -130 | | 4,620 | 3,529 | 3,398 | 2,542 | 2,884 | 4,523 | 3,764 | 4,491 | 3,863 | | | -140 | | | 4,472 | 4,027 | 4,366 | 4,807 | 3,949 | 4,882 | 3,988 | 3,932 | | | -150 | | | 4,548 | 4,011 | 3,833 | 3,313 | 3,896 | 3,520 | 4,034 | 4,239 | | | | UPPE | R POND | BASIN | | | | | | тот | AL SDF SU | R | | | BETA ACTIVITY & 1-cm | | | | | | | | | | | | | *** | 4-4 | 00 | | | | | | | | | | UPPER | POND | BASIN | TOTAL | . SDF | SURVEY | |--------|-------|-----------|---------------|-------|----------| | BETA A | CTIVI | TY @ 1-cm | BETA AG | IVIT | TY @ 1-c | | AVG | (dpm/ | 100cm2) | AVG (| dpm/ | 100cm2) | | | | ****** | | | | | median | = | 4,362 | BkGd = median | = | 4,207 | | mean | = | 4,306 | mean | = | 4,200 | | sdev | = | 566 | sdev | = | 555 | | max | = | 5,526 | max | = | 6,215 | | min | = | 2,542 | min | = | 2,326 | | n | = | 78 | n | = | 811 | | | | | | | | ssa = BkGd + (1,291) ssa = 5,498 dpm/100cm2 ^{*} note: One location with statistically significant beta activity was found in the upper pond area. Figure 15. Map of Upper Pond Locations With Statistically Significant Beta Activity. UPPER POND BASIN LOCATIONS WITH STATISTICALLY SIGNIFICANT SURFACE BETA ACTIVITY @ 1-cm (dpm/100cm2) | | west coordinate: | | | | | | | | | | | |-----------------|------------------|-----|------|------|------|------|------|------|------|------|--| | | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | | | | •••• | | •••• | •••• | •••• | •••• | •••• | •••• | •••• | •••• | | | south | | | | | | | | | | | | | coordinate: -60 | | | | | | | | • | | | | | -70 | | | | • | • | | • | • | • | | | | -80 | | • | • | • | • | • | • | • | • | | | | -90 | | • | • | • | • | • | • | • | • | | | | -100 | | • | • | | • | • | • | • | • | 28 | | | -110 | | • | • | • | • | • | • | • | • | • | | | -120 | | • | • | • | • | • | • | • | • | | | | -130 | | • | • | • | • | . • | • | • | • | • | | | -140 | | | • | • | • | • | • | • | • | | | | -150 | | | • | • | • | • | • | • | • | | | | UPPER | POND | BASIN | TOTAL | SDF | SURVEY | |--------|-------|-----------|---------------|------|-----------| | BETA A | CTIVI | TY @ 1-cm | BETA AC | TIVI | TY @ 1-cr | | AVG | (dpm/ | 100cm2) | AVG (| dpm/ | 100cm2) | | | | | | | | | median | = | 4,362 | BkGd = median | = | 4,207 | | mean | = | 4,306 | mean | = | 4,200 | | sdev | = | 566 | sdev | = | 555 | | max | = | 5,526 | max | = | 6,215 | | min | = | 2,542 | min | = | 2,326 | | n | = | 78 | n | = | 811 | | | | | | | | ssa = BkGd + (1,291) • ssa = 5,498 dpm/100cm2 ^{*} note: One location with statistically significant beta activity was found in the upper pond area. 7.4 West Area: A statistical summary of the West Area survey results are presented in Table 5-1. SSA values have been estimated from the West Area data so the area data can be compared to the overall site data. The averaged radiation levels for each location on the sample grid for the West Area are presented in Table 5-2. The radiation levels for each 10-ft grid interval are shown in map format in Figure 16 (Gamma Activity), Figure 17 (Gamma Exposure), and Figure 18 (Beta Activity). The survey found seven locations having statistically significant gamma activity. These locations are mapped in Figure 19 (Gamma Exposure). No statistically significant surface beta activity was recorded. All of the seven locations in the West Area having statistically significant gamma activity, were nevertheless only marginally above normal background. Note that all locations near the siltstone rock formations measured on the high side of the normal background range, and that the locations which showed activity levels above the ssa for the site, were all especially close to the massive rock cliffs along the west boundry of the site. The elevated readings in these instances are due to the higher background radioactivity of the natural mineral constituents in the siltstone cliff. All of the measurements that were made at locations away from the rock formations were indistinguishable from the normal background that is characteristic of the alluvium. | WEST
AREA
SUMMARY | median
mean
sdev
max
min
n | AVG GAMMA
al-m(cpm)
= 2916
= 2972
= 189
= 3831
= 2572
= 333 | AVG BETA
a1-cm(dpm)

794
795
96
1,076
567
333 | AVG GAMMA
EXPOSURE A
(UR/Hr) (13.5
13.8
0.9
17.8
11.9
333 | AVG BETA
(dpm/100cm2)

3,969
3,975
482
5,382
2,837
333 | |---------------------------------|---|--|---|--|--| | ssa based
on west
area | t
data: | 2916
+ 440
= 3356 | 794
+ 224
1,018 | 13.5
+ 2.1
15.6 | 3,969
1,122
5,091 | | ssa based
on total
survey | T | = 2966
+ 523
= 3489 | 841
+ 258
1,099 | 13.8
+ 2.4 +
16.2 | 4,207
1,291
5,498 | w_mapdat.wk1, 4aug92, 22:10p. Table 5-1. Statistical Summary of West Area Survey Results. Table 5-2. West Area -- Averaged Radiation Levels at Each Survey Location. WEST AREA: Averaged Rad Level at Each Location WEST AREA: Averaged Rad Level at Each Location | | MEST AREA: Averaged Rad Level at Each Location AVG GAMMA | | | | | | | WEST AREA: Averaged Rad Level at Each Location | | | | | | | | | |-------------|---|----------------|--------|------------------------|------------------------|--------------|--------------------------|--|---------|----------------|----------------|------|-----------------------|-------------|--------------|------------------------| | SDF
AREA | N/S
COORD | WEST | 0
7 | AVG GAMMA
21-m(cpm) | AVG BETA
a1-cm(dpm) | | AVG BETA
(dpm/100cm2) | | OF | N/S | WEST | D | AVG GAMMA | AVG BETA | | AVG BETA | | | | | ı | | e1-ca(opa) | (00/10) | (opay toucae) | | REA
 | COORD | COORD | 7 | 21-m(cpm) | 21-cs(dps) | (uR/Hr) | (dps/100cs2) | | ¥ | 10 S | 310 W | | 3446 | 831 | 16.0 | 4, 153 | ~ | | - 80 S | "390 W" | | 3753 | 726 | 17.4 ! | 3,630 | | ¥ | 10 S
10 S | 300 W
290 W | | 3277
3201 | 969
809 | 15.2 | 4,844 | ¥ | | 80 S | 380 ₩ | | 3358 | 1032 | 15.6 | 5,161 | | ŭ | 10 S | 280 W | | 3192 | 836 | 14.9
14.8 | 4,047
4,179 | ¥ | | 80 S | 370 W | | 3226 | 713 | 15.0 | 3,564 | | ũ | 10 S | 270 W | | 3036 | 836 | 14.1 | 4,180 | ų
u | | 80 S
80 S | 360 W
350 W | | 3199
3062 | 827
870 | 14.9
14.2 | 4,135
4,352 | | ¥ | 10 S | 260 W | | 3038 | 799 | 14.1 | 3,994 | ŭ | | 80 S | 340 W | | 3058 | 741 | 14.2 | 3,706 | | ¥ | 10 S | 250 W | | 3010 | 703 | 14.0 | 3,513 | ũ | | 80 S | 330 W | | 3023 | 813 | 14.0 | 4,066 | | ¥ | 20 S
20 S | 320 W
310 W | | 3471
3157 | 931
1018 | 16.1 | 4,657 | ¥ | | 80 S | 320 W | | 2960 | 719 | 13.8 | 3,594 | | ū | 20 S | 300 W | | 3166 | 847 | 14.7
14.7 | 5,091
4,235 | ¥ | | 80 S | 310 W | | 2966 | 970 | 13.8 | 4,850 | | ŭ | 20 S | 290 W | | 3122 | 820 | 14.5 | 4,102 | u
u | | 80 S
80 S | 300 W
290 W | (A) | 2947
tch) | 567 | 13.7 | 2,837 | | ¥ | 20 S | 280 W | | 3110 | 602 | 14.5 | 3,008 | ū | | 80 S | 280 W | (41) | 2871 | 757 | 13.3 | 3,783 | | ¥ | 20 S
20 S | 270 W | | 2996 | 761 | 13.9 | 3,807 | ¥ | | 80 S | 270 W | | 2902 | 781 | 13.5 | 3,905 | | ū | 20 S | 260 W
250 W | | 2912
2966 | 724
835 | 13.5
13.8 | 3,618
4,177 | ¥ | | 80 S | 260 ₩ | | 2920 | 686 | 13.6 | 3,430 | | ŭ | 20 S | 240 W | | 2963 | 762 | 13.8 | 3,810 | u | | 80 S
80 S | 250 W
240 W | | 2844
28 23 | 728
799 | 13.2
13.1 | 3,6 38
3,997 | | ¥ | 30 S | 330 M | | 3517 ! | 798 | 16.3 ! | 3,992 | ũ | | 80 S | 230 W | | 2936 | 882 | 13.6 | 4,412 | | ¥ | 30 S | 320 W | | 3220 | 735 | 15.0 | 3,674 | ũ | | 80 S | 220 W | | 2904 | 884 | 13.5 | 4,421 | | u | 30 S
30 S | 310 W
300 W | | 3204
3143 | 847
858 | 14.9
14.6 | 4,233
4,288 | ¥ | | 90 S | 390 W | | 3496 ! | 804 | 16.2 ! | 4,022 | | ū | 30 S | 290 W | | 3072 | 788 | 14.3 | 3,940 | u | | 90 S
90 S | 380 ¥
370 ¥ | | 3245
3106 | 929
804 | 15.1
14.4 | 4,645
4,018 | | ¥ | 30 S | 280 W | | 2986 | 735 | 13.9 | 3,674 | ŭ | | 90 S | 360 W | • | 3080 | 817 | 14.3 | 4.084 | | u | 30 S | 270 W | | 2862 | 773 | 13.3 | 3,863 | ű | | 90 S | 350 W | | 2977 | 793 | 13.8 | 3,967 | | ¥ | 30 S
30 S | 260 W
250 W | | 2872
2868 | 900
623 | 13.3
13.3 | 4,500
3,117 | ¥ | | 90 S | 340 W | | 2931 | 818 | 13.6 | 4,092 | | Ū | 30 S | 240 W | | 3033 | 1076 | 14.1 | 5,382 | ¥ | | 90 S | 330 W | | 2690 | 676 | 12.5 | 3,382 | | ¥ | 40 S | 340 W | | 3316 | 857 | 15.4 | 4,287 | u | | 90 S
90 S | 320 W
310 W | | 2734
2806 | 623
744 | 12.7
13.0 | 3,116
3,721 | | u | 40 S | 330 W | | 3147 | 821 | 14.6 | 4, 103 | ũ | | 90 S | 300 W | | 2779 | 712 | 12.9 | 3,561 | | ¥ | 40 S
40 S | 320 W
310 W | | 3150
3141 | 697
868 | 14.6 | 3,487
4,341 | ¥ | | 90 S | 290 W | | 2691 | 675 | 12.5 | 3,375 | | ū | 40 S | 300 M | | 2989 | 847 | 14.6
13.9 | 4,237 | Ų | | 90 S | 280 W | | 2823 | 850 | 13.1 | 4,251 | | ¥ | 40 S | 290 W | | 3037 | 783 | 14.1 | 3,913 | ų
u | | 90 S
90 S | 270 W
260 W | | 2806
2826 | 803
860 | 13.0
13.1 | 4,016
4,301 | | ¥ | 40 S | 280 V | | 3010 | 762 | 14.0 | 3,808 | ũ | | 90 S | 250 W | | 2758 | 713 | 12.8 | 3,564 |
 W | 40 S
40 S | 270 W
260 W | | 2851
2887 | 682 | 13.2 | 3,410 | ¥ | | 90 S | 240 W | | 2707 | 761 | 12.6 | 3,803 | | ŭ | 40 S | 250 W | | 2880 | 895
756 | 13.4
13.4 | 4,473
3,781 | ¥ | | 90 S | 230 W | | 2679 | 663 | 12.4 | 3,317 | | Ÿ | 40 S | 240 W | | 2971 | 751 | 13.8 | 3,755 | u
u | | 90 S
90 S | 220 W
210 W | | 2985
2835 | 877
856 | 13.9
13.2 | 4,385
4,281 | | u | 40 S | 230 W | | 2940 | 618 | 13.7 | 3,090 | 5 | | 100 S | 400 W | | 3743 ! | 835 | 17.4 ! | 4,177 | | ¥ | 50 S
50 S | 350 W
340 W | | 3311 | 831 | 15.4 | 4,154 | Ū | | 100 S | 390 W | | 3357 | 964 | 15.6 | 4,820 | | ŭ | 50 S | 330 U | | 3257
3066 | 778
820 | 15.1
14.2 | 3,888
4,100 | U | | 100 S | 380 W | | 3257 | 792 | 15.1 | 3,962 | | ŭ | 50 S | 320 W | | 3122 | 964 | 14.5 | 4,819 | ¥ | | 100 S
100 S | 370 W
360 W | | 3175
3140 | 921
822 | 14.8
14.6 | 4,606 | | ¥ | 50 S | 310 W | • | 3046 | 881 | 14.2 | 4,403 | Į. | | 100 S | 350 W | - | 3109 | 854 | 14.4 | 4,111
4,271 | | ¥ | 50 S
50 S | 300 W | • | 3000 | 797 | 14.0 | 3,986 | ũ | | 100 S | 340 W | | 3067 | 784 | 14.2 | 3,919 | | ŭ | 50 S | 290 W
280 W | | 3003
2884 | 871
880 | 14.0
13.4 | 4,356
4,401 | ¥ | | 100 S | 330 W | | 2948 | 762 | 13.7 | 3,811 | | Ÿ | 50 s | 270 W | • | 2940 | 917 | 13.7 | 4,408 | ¥ | | 100 S
100 S | 320 W
310 W | | 2881
2840 | 756
629 | 13.4
13.2 | 3,778
3,147 | | ¥ | 50 S | 260 W | • | 2943 | 860 | 13.7 | 4,297 | ū | | 100 S | 300 M | | 2753 | 730 | 12.8 | 3,649 | | ¥ | 50 S
50 S | 250 W
240 W | : | 2881
2949 | 768 | 13.4 | 4,331 | ü | | 100 S | 290 W | | 2834 | 910 | 13.2 | 4,550 | | Ü | 50 S | 230 W | | 2960 | 812
760 | 13.7
13.8 | 4,060
3,798 | ¥ | | 100 S | 280 W | | 2869 | 767 | 13.3 | 3,833 | | ¥ | 60 S | 370 W | | 3452 | 997 | 16.0 | 4,986 | ¥ | | 100 S
100 S | 270 W
260 W | | 2888
2870 | 844
789 | 13.4
13.3 | 4,218
3,946 | | ¥ | 60 s | 360 U | | 3311 | 854 | 15.4 | 4,271 | Ü | | 100 S | 250 W | | 2782 | 827 | 12.9 | 4, 135 | | ¥ | 60 S
60 S | 350 W
340 W | | 3156
3147 | 876
799 | 14.7
14.6 | 4,378
3,993 | U | | 100 S | 240 W | | 2786 | 886 | 12.9 | 4,431 | | Ū | 60 S | 330 W | | 3067 | 602 | 14.2 | 3,993
3,010 | u. | | 100 5 | 230 W | _ | 2666 | 726 | 12.4 | 3,630 | | ¥ | 60 S | 320 W | | 2995 | 828 | 13.9 | 4,138 | W | | 100 S
100 S | 220 W
210 W | : | 2943
2970 | 944
786 | 13.7
13.8 | 4,719
3,930 | | ¥ | 60 S | 310 W | | 2995 | 724 | 13.9 | 3,621 | ŭ | | 110 S | 400 W | - | 3517 1 | 940 | 16.3 ! | 4,698 | | ŭ | 60 S | 300 W
290 W | | 3047
2882 | 882
791 | 14.2
13.4 | 4,412
3,956 | ¥ | | 110 S | 390 W | | 3429 | 839 | 15.9 | 4, 195 | | Ü | 60 S | 280 W | | 2878 | 702 | 13.4 | 3,511 | ¥ | | 110 S | 380 W | | 3335 | 893 | 15.5 | 4,465 | | ¥ | 60 S | 270 W | | 2939 | 825 | 13.7 | 4,124 | u
u | | 110 S
110 S | 370 W
360 W | | 3310
3213 | 865
852 | 15.4
14.9 | 4,325
4,262 | | u | 60 S | 260 W | | 2949 | 809 | 13.7 | 4.043 | ŭ | | 110 S | 350 W | | 3184 | 840 | 14.8 | 4,198 | | ŭ | 60 S
60 S | 250 W
240 W | | 2893
2884 | 956
816 | 13.4 | 4,779 | ũ | | 110 S | 340 W | | 3050 | 822 | 14.2 | 4,110 | | ū | 60 S | 230 W | | 2944 | 846 | 13.4
13.7 | 4,080
4.230 | ¥ | | 110 S | 330 W | | 2991 | 840 | 13.9 | 4,202 | | U | 60 S | 220 W | | 2925 | 752 | 13.6 | 3,758 | ¥ | | 110 S
110 S | 320 W
310 W | | 2890
2941 | 775
813 | 13.4
13.7 | 3,875
4,066 | | ¥ | 70 s | 390 N | | 3831 | 944 | 17.8 ! | 4,719 | ŭ | | 110 S | 300 W | | 2882 | 613 | 13.4 | 3,066 | | ¥ | 70 s | 380 V | | 3483 1 | 892 | 16.2 1 | 4,461 | ũ | | 110 S | 290 W | | 2905 | 911 | 13.5 | 4,553 | | Ü | 70 S
70 S | 370 W
360 W | | 3278
3224 | 855
838 | 15.2
15.0 | 4,274
4,188 | U | | 110 S | 280 W | | 2861 | 803 | 13.3 | 4,013 | | ¥ | 70 s | 350 W | | 3100 | 809 | 14.4 | 4,046 | y | | 110 S | 270 W | | 2892 | 892 | 13.4 | 4,458 | | W | 70 s | 340 W | | 3138 | 832 | 14.6 | 4,159 | u | | 110 S
110 S | 260 W
250 W | | 2846
28 3 1 | 892
812 | 13.2
13.2 | 4,461
4,061 | | u u | 70 s | 330 W | • | 3035 | 866 | 14.1 | 4,330 | ū | | 110 S | 240 W | | 2796 | 898 | 13.0 | 4,491 | | ŭ | 70 s
70 s | 320 W
310 W | | 2996
3013 | 700
863 | 13.9
14.0 | 3,501
4,313 | W | | 110 S | 230 W | | 2809 | 680 | 13.0 | 3,402 | | ũ | 70 s | 300 W | | 2939 | 758 | 13.7 | 4,313
3,792 | ¥ | | 110 S | 220 W | * | 2912 | 773 | 13.5 | 3,863 | | ¥ | 70 S | 290 W | (di | tch) | | | | u. | | 110 S
120 S | 210 W
400 W | - | 3210
3360 | 805
786 | 14.9
15.6 | 4,025
3,928 | | u | 70 s | 280 W | | 2930 | 773 | 13.6 | 3,864 | ŭ | | 120 S | 390 W | | 3340 | 926 | 15.5 | 4,631 | | ŭ | 70 S
70 S | 270 W
260 W | | 2887
2846 | 667
773 | 13.4
13.2 | 3,335
3,866 | ü | | 120 S | 380 W | | 3334 | 1006 | 15.5 | 5,030 | | ü | 70 s | 250 W | • | 2888 | 851 | 13.4 | 4,253 | Ų | | 120 S | 370 W | | 3287 | 847 | 15.3 | 4,235 | | U | 70 s | 240 W | | 2911 | 729 | 13.5 | 3,645 | u | | 120 S
120 S | 360 W
350 W | | 3161
3146 | 901
1010 | 14.7
14.6 | 4,506
5,051 | | v | 70 S | 230 W | | 2901 | 811 | 13.5 | 4.053 | i, ü | | 120 S | 340 W | | 2969 | 1063 | 13.8 | 5,313 | | | | | | | | | | ů. | | 120 S | 330 W | | 3010 | 711 | 14.0 | 3.554 | Table 5-2 (cont'd). West Area -- Averaged Radiation Levels at Each Survey Location. | | WEST ARE | A: Aver | raged | Rad Level | at Each Loca | | | | | WEST AR | EA: Ave | raged | Rad Level | at Each Loc | | | |-------------|----------------|----------------|--------|------------------------|-------------------------|--------------|---------------------------|--------|-------------|----------------|----------------|--------|------------------------------|-------------------------|----------------------------------|--------------------------------| | SDF
AREA | N/S
COORD | WEST
COORD | D
7 | AVG GAMMA
81-m(cpm) | AVG BETA
81-cm(clpm) | (uR/Hr) | AVG BETA
(clpm/100cm2) | | SDF
AREA | N/S
COORD | WEST
COORD | 0
? | AVG GAMMA
31-m(cpm) | AVG BETA
21-cm(cips) | AVG GAMMA
EXPOSURE
(uR/Hr) | AVG BETA
(closs/100cm) | | | 455 | | | | **** | | **** | | | | ***** | | | ***** | | | | u | 120 s | 320 W | | 2877
2848 | 607
738 | 13.4
13.2 | 3,034
3,688 | | ¥ | 160 S | 350 W | | 2857
2900 | 884
646 | 13.3
13.5 | 4,020
3,232 | | u | 120 S
120 S | 300 W
290 W | (di1 | tch)
2863 | 757 | | • | | u
u | 160 S | 330 W | | 2811 | 680 | 13.1 | 3,398 | | ũ | 120 s | 280 W | | 2900 | 838 | 13.3
13.5 | 3,785
4,188 | | ū | 160 \$ | 310 W | | 2872
2968 | 746
660 | 13.3
13.8 | 3 <i>,7</i> 28
3,301 | | u | 120 S
120 S | 270 W | | 2864 | 885 | 13.3 | 4,426 | | ¥ | 160 S | 300 W | | 2833 | 722 | 13.2 | 3,608 | | ű | 120 S | 260 W
250 W | | 2957
2886 | 875
1007 | 13.7
13.4 | 4,377
5,034 | | u | 160 S
160 S | 290 W
280 W | | 2905
2865 | 771
794 | 13.5
13.3 | 3,854
3,969 | | ¥ | 120 S | 240 W | | 2863 | 815 | 13.3 | 4,075 | | ¥ | 160 S | 270 W | | 2905 | 718 | 13.5 | 3,589 | | u | 120 s
120 s | 230 W
220 W | | 2877
2991 | 776
832 | 13.4
13.9 | 3,880
4,159 | | u
u | 160 S
160 S | 260 W
250 W | | 2881
2921 | 731
800 | 13.4
13.6 | 3,653 | | W | 120 S | 210 W | • | 2922 | 835 | 13.6 | 4,176 | | ¥ | 160 S | 240 W | _ | 2876 | 764 | 13.4 | 4,002
3,819 | | u | 120 S
130 S | 200 W
400 W | • | 3242
3242 | 921
921 | 15.1
15.1 | 4,606
4,606 | | u
u | 160 S
160 S | 230 W
220 W | | 2 82 0
2770 | 840
573 | 13.1
12.9 | 4,202 | | Ũ | 130 s | 390 W | | 3340 | 915 | 15.5 | 4,574 | | Ū | 16Q S | 210 W | | 2892 | 573
847 | 13.4 | 2,867
4,234 | | ¥ | 130 s
130 s | 380 W
370 W | | 3330
3252 | 905
990 | 15.5
15.1 | 4,527 | | ¥ | 160 S
170 S | 200 W
400 W | | 2736
3084 | 815 | 12.7 | 4,076 | | ŭ | 130 S | 360 W | | 3067 | 881 | 14.3 | 4,952
4,407 | ! | J | 170 S | 390 W | | 3021 | 777
8 72 | 14.3
14.0 | 3,887
4,361 | | u | 130 S
130 S | 350 W
340 W | | 3032
2902 | 850
871 | 14.1 | 4,251 | | u
u | 170 S
170 S | 380 W
370 W | | 2978 | 856 | 13.8 | 4,281 | | ŭ | 130 S | 330 W | | 2929 | 744 | 13.5
13.6 | 4,354
3,718 | | u u | 170 S | 360 W | | 2908
2875 | 689
748 | 13.5
13.4 | 3,446
3,741 | | u | 130 s
130 s | 320 W
310 W | | 2916 | 817 | 13.5 | 4,083 | | W
W | 170 S | 350 W | | 2799 | 700 | 13.0 | 3,501 | | ü | 130 s | 300 W | (dit | 2907
:ch) | 890 | 13.5 | 4,449 | | | 170 S
170 S | 340 W
330 W | | 2804
2880 | 715
847 | 13.0
13.4 | 3,576
4,2 3 7 | | ¥ | 130 s
130 s | 290 W
280 W | | 2976 | 876 | 13.8 | 4,382 | | | 170 S | 320 W | | 2864 | 900 | 13.3 | 4,502 | | v | 130 s | 270 W | | 3018
2988 | 709
792 | 14.0
13.9 | 3,545
3,960 | 1 | | 170 S
170 S | 310 W
300 W | | 2900
2774 | 916
750 | 13.5
12.9 | 4,578
3,748 | | ¥ | 130 s
130 s | 260 W
250 W | | 2916 | 833 | 13.5 | 4, 165 | Ĭ | | 170 S | 290 W | | 2902 | 941 | 13.5 | 4,703 | | Ū | 130 S | 240 W | | 2839
2908 | 905
814 | 13.2
13.5 | 4,523
4,069 | i
i | | 170 s
170 s | 280 W
270 W | | 2877
2847 | 729
718 | 13.4
13.2 | 3,647
3,589 | | ¥ | 130 S | 230 W | | 2908 | 735 | 13.5 | 3,674 | 1 | | 170 s | 260 W | | 2866 | 671 | 13.3 | 3,354 | | Ü | 130 s
130 s | 220 W
210 W | | 290 8
3029 | 690
821 | 13.5
14.1 | 3,448
4,103 | , i | | 170 S
170 S | 250 W
240 W | | 2819
2851 | 787
739 | 13.1
13.2 | 3,937
3,695 | | ¥ | 130 s | 200 W | • | 2898 | 652 | 13.5 | 3,259 | | i | 170 S | 230 W | | 2793 | 588 | 13.0 | 2,941 | | ¥ | 140 S
140 S | 400 W
390 W | | 3314
3340 | 954
775 | 15.4
15.5 | 4,771
3,873 | i. | | 170 S
170 S | 220 W
210 W | | 2766
2774 | - 666
- 718 | 12.9
12.9 | 3,329
3,591 | |
U | 140 S | 380 W | | 3268 | 864 | 15.2 | 4,322 | | | 170 s | 200 W | _ | 2668 | 578 | 12.4 | 2,889 | | u | 140 S
140 S | 370 W
360 W | | 3090
3025 | 983
765 | 14.4
14.1 | 4,915
3,824 | ų. | | 180 S
180 S | 400 W
390 W | | 2941
3016 | 756
777 | 13.7 | 3,778 | | ¥ | 140 S | 350 W | | 2975 | 777 | 13.8 | 3,886 | , | | 180 S | 380 W | | 2831 | 727
570 | 14.0
13.2 | 3,6 33
2,8 52 | | ¥ | 140 S
148 S | 340 W
330 W | | 3036
2902 | 690
752 | 14.1
13.5 | 3,449
3,758 | | | 180 S | 370 W | | 2853 | 803 | 13.3 | 4,015 | | Ÿ | 140 \$ | 320 W | | 2918 | 659 | 13.6 | 3,294 | · · | | 180 S
180 S | 360 W
350 W | | 29 23
2862 | 763
748 | 13.6
13.3 | 3,817
3, <i>7</i> 39 | | ¥ | 140 S
140 S | 310 W
300 W | | 2877
2901 | 706
751 | 13.4
13.5 | 3,531 | ¥ | | 180 S | 340 W | | 2824 | 882 | 13.1 | 4,408 | | w | 140 S | 290 W | | 2763 | 745 | 12.8 | 3,757
3,725 | ¥ | | 180 S
180 S | 330 W
320 W | | 2916
2849 | 750
728 | 13.5
13.2 | 3,750
3,642 | | ¥ | 140 S
140 S | 280 W
270 W | | 3039
2946 | 676
681 | 14.1
13.7 | 3,382
3,405 | ¥ | | 180 S | 310 W | | 2846 | 655 | 13.2 | 3,275 | | W | 140 S | 260 W | | 2852 | 684 | 13.2 | 3,420 | ¥ | | 180 S
180 S | 300 W
290 W | | 2904
2886 | 733
702 | 13.5
13.4 | 3,665
3,511 | | ¥ | 140 S
140 S | 250 W | | 2921 | 747 | 13.6
13.8 | 3,734 | ¥ | | 180 S | 280 W | | 2829 | 803 | 13.1 | 4,016 | | ¥ | 140 S | 240 W
230 W | | 2960
2955 | 863
895 | 13.7 | 4,315
4,474 | u | | 180 S
180 S | 270 W
260 W | | 2869
2900 | 773
797 | 13.3
13.5 | 3,866
3,983 | | W | 140 S | 220 W | | 2896 | 844 | 13.5 | 4,218
4,094 | ¥ | | 180 S | 250 W | | 2907 | 793 | 13.5 | 3,967 | | u | 140 S
140 S | 210 W
200 W | • | 2931
2906 | 819
764 | 13.6
13.5 | 3,818 | u | | 180 S
180 S | 240 W
230 W | | 2854
2909 | 749
862 | 13.3
13.5 | 3, <i>7</i> 43
4,311 | | V | 140 S
150 S | 190 W | | 2801 | 747
1002 | 13.0
15.0 | 3,737 | W | ! | 180 S | 220 W | | 2688 | 746 | 12.5 | 3,732 | | ¥ | 150 S | 390 W | | 3228
3115 | 729 | 14.5 | 5,012
3,647 | u | | 180 S
180 S | 210 W
200 W | | 2622
2572 | 580
633 | 12.2
11.9 | 2,902
3,165 | | u | 150 S
150 S | 380 ¥
370 ¥ | | 3141 | 946 | 14.6 | 4,728 | ¥ | | 190 S | 350 W | | 2853 | 771 | 13.3 | 3,854 | | ¥ | 150 S | 360 W | | 3118
2951 | 698
698 | 14.5
13.7 | 3,492
3,488 | u | | 190 s
190 s | 340 W
330 W | | 2895
2903 | 711
683 | 13.5
13.5 | 3,554
3,414 | | u | 150 S
150 S | 350 W
340 W | | 2887
2943 | 710 | 13.4
13.7 | 3,548
4,105 | ¥ | | 190 S | 320 W | | 2838 | 812 | 13.2 | 4,060 | | Ÿ | 150 S | 330 W | | 2910 | 821
882 | 13.5 | 4,408 | u | | 190 S
190 S | 310 W
300 W | | 2 539
2 792 | 610
722 | 13.2
13.0 | 3,050
3,608 | | ¥ | 150 S
150 S | 320 W | | 2842 | 710 | 13.2 | 3,550 | ¥ | | 190 S | 290 W | | 2854 | 737 | 13.3 | 3,684 | | ¥ | 150 S | 310 W
300 W | | 2856
2850 | 735
789 | 13.3
13.2 | 3,674
3,944 | u | | 190 S
190 S | 280 W
270 W | | 2777
2 83 7 | 775
6 36 | 12.9
13.2 | 3,875
3,181 | | u | 150 S | 290 W | | 3008 | 821 | 14.0 | 4,103 | ¥ | | 190 s | 260 W | | 2858 | 741 | 13.3 | 3,706 | | v | 150 S
150 S | 280 W
270 W | | 2958
3020 | 770
712 | 13.7
14.0 | 3,852
3,561 | . u | | 190 s
190 s | 250 W
240 W | | 2753
2905 | 656
776 | 12.8
13.5 | 3,282
3,879 | | ¥ | 150 S | 260 W | | 2924 | 862 | 13.6 | 4,311 | ¥ | | 190 s | 230 W | | 2899 | 921 | 13.5 | 4,605 | | u | 150 S
150 S | 250 W
240 W | | 2905
2959 | 555
557 | 13.5
13.7 | 4,440
4,433 | u | | 190 S
190 S | 220 W
210 W | | 2945
2721 | 924
974 | 13.7
12.6 | 4,620
4,871 | | ¥ | 150 S | 230 W | | 2851 | 757 | 13.2 | 3,785 | u | | 190 S | 200 W | | 2666 | 828 | 12.4 | 4,140 | | ¥ | 150 S
150 S | 220 W
210 W | | 2775
2798 | 791
744 | 12.9
13.0 | 3,953
3,718 | u | | 200 s
200 s | 300 W
290 W | | 2753
2703 | 659
720 | 12.8
12.6 | 3,295
3,598 | | u | 150 S | 200 W | • | 2931 | 691 | 13.7 | 3,457 | u | | 200 s | 280 W | | 2799 | 747 | 13.0 | 3, 735 | | v | 150 S
160 S | 190 W
400 W | | 2879
3148 | 684
780 | 13.4
14.6 | 3,418
3,898 | u
u | | 200 S
200 S | 270 W
260 W | | 2737
2864 | 611
616 | 12.7
13.3 | 3,056 | | ¥ | 160 S | 390 W | | 3167 | 942 | 14.7 | 4,709 | u | | 200 s | 250 W | | 2747 | 643 | 12.8 | 3,082
3,213 | | ¥ | 160 S
160 S | 380 W
370 W | | 3088
2906 | 948
946 | 14.3
13.5 | 4,740
4,728 | u | | 200 s
200 s | 240 W
230 W | | 2744
2794 | 652 | 12.7 | 3,260 | | Ÿ, | _160 s | 360 W | | 2905 | 830 | 13.5 | 4.152 | ¥ | | 200 s | 220 W | | 2794
2858 | 733
915 | 13.0
13.3 | 3,667
4,576 | | | | | | | | | | u | | 200 s
200 s | 210 W | | 2735
2589 | 762 | 12.7 | 3,810 | | • | _mepdet.i | aki, 4mum | 92, | 22:10p. | | | | 4 | | 3 | 700 M | | 2307 | 617 | 12.0 | 3,084 | | | | | | | | | | | | | | | | | | | Figure 16. Map of West Area Ambient Gamma Activity - west | | | WEST AREA AMBIENT GAMMA ACTIVITY & 1-m (cpm) | | | | | | | | | (page 1 of 2) | | | |------------|------|--|------|------|---------|------|------|------|------|-------------------|---------------|------|--| | | | | | | est cod | | | | | | | | | | | | 400 | 390 | 380 | 370 | 360 | 350 | 340 | 330 | 320 | 310 | 300 | | | south | -10 | | | | | | | **** | | | 3446 | 3277 | | | coordinate | -20 | | | | | | • | | | 3471 | 3157 | 3166 | | | | -30 | | | | | | | | 3517 | 3220 | 3204 | 3143 | | | | -40 | | | | | | | 3316 | 3147 | 3150 | 3141 | 2989 | | | | -50 | | | | | | 3311 | 3257 | 3066 | 3122 | 3046 | 3000 | | | | -60 | | | | 3452 | 3311 | 3156 | 3147 | 3067 | 2995 | 2995 | 3047 | | | | -70 | | 3831 | 3483 | 3278 | 3224 | 3100 | 3138 | 3035 | 2996 | 3013 | 2939 | | | | -80 | | 3753 | 3358 | 3226 | 3199 | 3062 | 3058 | 3023 | 2960 | 2966 | 2947 | | | | -90 | | 3496 | 3245 | 3106 | 3080 | 2977 | 2931 | 2690 | 2734 | 2806 | 2779 | | | | -100 | 3743 | 3357 | 3257 | 3175 | 3140 | 3109 | 3067 | 2948 | 2881 ⁻ | 2840 | 2753 | | | | -110 | 3517 | 3429 | 3335 | 3310 | 3213 | 3184 | 3050 | 2991 | 2890 | 2941 | 2882 | | | | -120 | 3360 | 3340 | 3334 | 3287 | 3161 | 3146 | 2969 | 3010 | 2877 | 2848 | d | | | | -130 | 3242 | 3340 | 3330 | 3252 | 3067 | 3032 | 2902 | 2929 | 2916 | 2907 | d | | | | -140 | 3314 | 3340 | 3268 | 3090 | 3025 | 2975 | 3036 | 2902 | 2918 | 2877 | 2901 | | | | -150 | 3228 | 3115 | 3141 | 3118 | 2951 | 2887 | 2943 | 2910 | 2842 | 2856 | 2850 | | | | -160 | 3148 | 3167 | 3088 | 2906 | 2905 | 2857 | 2900 | 2811 | 2872 | 2968 | 2833 | | | | -170 | 3084 | 3021 | 2978 | 2908 | 2875 | 2799 | 2804 | 2880 | 2864 | 2900 | 2774 | | | | -180 | 2941 | 3016 | 2831 | 2853 | 2923 | 2862 | 2824 | 2916 | 2849 | 2846 | 2904 | | | | -190 | | | | | | 2853 | 2895 | 2903 | 2838 | 2839 | 2792 | | | | -200 | | | | | | | | | | | 2753 | | ## Figure 16 (cont'd). Map of West Area Ambient Gamma Activity - eas1 | • | (WEST AF | REA 1-m | AMBIENT | GAMMA | (avg cp | m) | | i | page 2 d | of 2 | | | | |------|----------|---------|----------|-------|---------|------|------|------|----------|------|-------|------------|----------------------------------| | | | west c | oordinat | te: | | | | 4 | (cont'd) | | | | | | 290 | 280 | 270 | 260 | 250 | 240 | 230 | 220 | 210 | 200 | 190 | 3201 | 3192 | 3036 | 3038 | 3010 | | | | | | | -10 | south | | | | | | | | | | | | | | | coordinate | | | 3122 | 3110 | 2996 | 2912 | 2966 | 2963 | | | | | | -20 | | | | | | | | | | | | | | | | | | | 3072 | 2986 | 2862 | 2872 | 2868 | 3033 | | | | | | -30 | | | | | | | | | | | | | | | | | | | 3037 | 3010 | 2851 | 2887 | 2880 | 2971 | 2940 | | | | | -40 | | | | | | | | | | | | | | | | | | | 3003 | 2884 | 2940 | 2943 | 2881 | 2949 | 2960 | | | | | -50 | | WEST AREA | | | | | | | | | | | | | | | AMBIENT GAMMA @ 1-m | | 2882 | 2878 | 2939 | 2949 | 2893 | 2884 | 2944 | 2925 | | | | -60 | | (avg cpm) | | | | | | | | | | | | | | | | | đ | 2930 | 2887 | 2846 | 2888 | 2911 | 2901 | | | | | -70 | | median= 2916 | | , | 2074 | 2002 | 2020 | 2011 | 2007 | 207/ | 2001 | | | | | | mean= 2972 | | ď | 2871 | 2902 | 2920 | 2844 | 2823 | 2936 | 2904 | | | | -80 | | sdev= 189 | | 3/04 | 2027 | 2007 | 2027 | 277 | 2707 | 2470 | 2005 | 2075 | | | 20 | | max= 3831 | | 2691 | 2823 | 2806 | 2826 | 2758 | 2707 | 2679 | 2985 | 2835 | | | -90 | | min= 2572 | | 207/ | 20/0 | 2000 | 2070 | 2702 | 270/ | 2/// | 20/7 | 2070 | | | 100 | | n= 333 | | 2834 | 2869 | 2888 | 2870 | 2782 | 2786 | 2666 | 2943 | 2970 | | | -100 | | | | 2905 | 2861 | 2892 | 2846 | 2071 | 2796 | 2900 | 2912 | 3210 | | | -110 | | ssa = 8kGd + (523) | | 2903 | 2001 | 2072 | 2040 | 2831 | 2170 | 2809 | 2914 | 3210 | | | -110 | | ssa = BkGd + (523)
= 3489 cpm | | 2863 | 2900 | 2864 | 2957 | 2886 | 2863 | 2877 | 2991 | 2922 | 3242 | | -120 | | = 3467 cpii | | 2003 | 2700 | 2004 | 2731 | 2000 | 2003 | 2011 | 2771 | 2722 | 3242 | | - 120 | | | | 2976 | 3018 | 2988 | 2916 | 2839 | 2908 | 2908 | 2908 | 3029 | 2898 | | -130 | | SDF SURVEY TOTAL | | 2710 | 3010 | 2,00 | 2710 | | 2700 | 2700 | 2,00 | JULY | 2070 | | 130 | | AMBIENT GAMMA @ 1-m | | 2763 | 3039 | 2946 | 2852 | 2921 | 2960 | 2955 | 2896 | 2931 | 2906 | 2801 | -140 | | (avg cpm) | | | | | | | 4,00 | | | | | | | | | | 3008 | 2958 | 3020 | 2924 | 2905 | 2959 | 2851 | 2775 | 2798 | 2931 | 2879 | -150 | | median= 2966 =8kGd | | | - | _ | | | | | | | | | | | mean= 2996 | | 2905 | 2865 | 2905 | 2881 | 2921 | 2876 | 2820 | 2770 | 2892 | 2736 | | -160 | • | sdev= 225 | | | | | | | | | | | | | | | max= 5914 | | 2902 | 2877 | 2847 | 2866 | 2819 | 2851 | 2793 | 2766 | 2774 | 2668 | | -170 | | min= 2097 | | | | | | | | | | | | | | | n= 812 | | 2886 | 2829 | 2869 | 2900 | 2907 | 2854 |
2909 | 2688 | 2622 | 2572 | | -180 | | | | | | | | | | | | - | | | | | | | 2854 | 2777 | 2837 | 2858 | 2753 | 2905 | 2899 | 2945 | 2721 | 2666 | | -190 | | | | | | | | | | | | | | | | | | | 2703 | 2799 | 2737 | 2864 | 2747 | 2744 | 2794 | 2858 | 2735 | 2589 | | -200 | | | Figure 17. Map of West Area Gamma Exposure - west | | | _ | | | - | | | | | _ | | | |---|----------|------|------|------|----------------|----------------|------|------|------|------|------|------| | WEST AREA AMBIENT GAMMA EXPOSURE @ 1-m (uR/hr) (page 1 west coordinate: 400 390 380 370 360 350 340 330 320 310 | | | | | | | | | | | | | | | | 400 | 390 | 380 | est coo
370 | rdinate
360 | | 340 | 330 | 320 | 310 | 300 | | | | **** | | | | | | | | | | | | south
coordinate: | -10
: | | | | | | | | | | 16.0 | 15.2 | | | -20 | | | | | | | | | 16.1 | 14.7 | 14.7 | | | -30 | | | | | | | | 16.3 | 15.0 | 14.9 | 14.6 | | | -40 | | | | | | | 15.4 | 14.6 | 14.6 | 14.6 | 13.9 | | | -50 | | | | | | 15.4 | 15.1 | 14.2 | 14.5 | 14.2 | 14.0 | | | -60 | | | | 16.0 | 15.4 | 14.7 | 14.6 | 14.2 | 13.9 | 13.9 | 14.2 | | | -70 | | 17.8 | 16.2 | 15.2 | 15.0 | 14.4 | 14.6 | 14.1 | 13.9 | 14.0 | 13.7 | | | -80 | | 17.4 | 15.6 | 15.0 | 14.9 | 14.2 | 14.2 | 14.0 | 13.8 | 13.8 | 13.7 | | | -90 | | 16.2 | 15.1 | 14.4 | 14.3 | 13.8 | 13.6 | 12.5 | 12.7 | 13.0 | 12.9 | | | -100 | 17.4 | 15.6 | 15.1 | 14.8 | 14.6 | 14.4 | 14.2 | 13.7 | 13.4 | 13.2 | 12.8 | | | -110 | 16.3 | 15.9 | 15.5 | 15.4 | 14.9 | 14.8 | 14.2 | 13.9 | 13.4 | 13.7 | 13.4 | | | -120 | 15.6 | 15.5 | 15.5 | 15.3 | 14.7 | 14.6 | 13.8 | 14.0 | 13.4 | 13.2 | d | | | -130 | 15.1 | 15.5 | 15.5 | 15.1 | 14.3 | 14.1 | 13.5 | 13.6 | 13.5 | 13.5 | d | | | -140 | 15.4 | 15.5 | 15.2 | 14.4 | 14.1 | 13.8 | 14.1 | 13.5 | 13.6 | 13.4 | 13.5 | | | -150 | 15.0 | 14.5 | 14.6 | 14.5 | 13.7 | 13.4 | 13.7 | 13.5 | 13.2 | 13.3 | 13.2 | | | -160 | 14.6 | 14.7 | 14.3 | 13.5 | 13.5 | 13.3 | 13.5 | 13.1 | 13.3 | 13.8 | 13.2 | | | -170 | 14.3 | 14.0 | 13.8 | 13.5 | 13.4 | 13.0 | 13.0 | 13.4 | 13.3 | 13.5 | 12.9 | | | -180 | 13.7 | 14.0 | 13.2 | 13.3 | 13.6 | 13.3 | 13.1 | 13.5 | 13.2 | 13.2 | 13.5 | | | -190 | | | | | | 13.3 | 13.5 | 13.5 | 13.2 | 13.2 | 13.0 | | | -200 | | | | | | | | | | | 12.8 | Figure 17 (cont'd). Map of West Area Gamma Exposure - east | | (WEST A | REA 1-m | AMBIEN | T GAMMA | EXPOSU | RE (uR/ | hr) | | page 2 | of 2 | | | • | |------|---------|---------|---------|---------|---------|---------|------|------|---------|-------|-------|------------|----------------------| | | | west c | oordina | te: | | | | | (cont'd |) | | | | | 290 | 280 | 270 | 260 | 250 | 240 | 230 | 220 | 210 | 200 | 190 | | | | | | | | **** | **** | **** | | | | | ***** | | | | | 14.9 | 14.8 | 14.1 | 14.1 | 14.0 | | | | | | | -10 | south | | | | | 43.0 | | | | | | | | | | coordinate | | | 14.5 | 14.5 | 13.9 | 15.5 | 13.8 | 13.8 | | | | | | -20 | | | | 14.3 | 13.9 | 13.3 | 13.3 | 13.3 | 14.1 | | | | | | -30 | | | | 14.1 | 14.0 | 13.2 | 13.4 | 13.4 | 13.8 | 13.7 | | | | | -40 | | | | 14.0 | 13.4 | 13.7 | 13.7 | 13.4 | 13.7 | 13.8 | | | | | -50 | | WEST AREA | | | | | | | | | | | | | ,,, | | GAMMA EXPOSURE @ 1-m | | 13.4 | 13.4 | 13.7 | 13.7 | 13.4 | 13.4 | 13.7 | 13.6 | | | | -60 | | (uR/hr) | | | | | | | | | | | | | | | **** | | d | 13.6 | 13.4 | 13.2 | 13.4 | 13.5 | 13.5 | | | | | -70 | | median= 13.5 | | | | | | | | | | | | | | | mean= 13.8 | | d | 13.3 | 13.5 | 13.6 | 13.2 | 13.1 | 13.6 | 13.5 | | | | -80 | | sdev= 0.9 | | | | | | | | | | | | | | | max= 17.8 | | 12.5 | 13.1 | 13.0 | 13.1 | 12.8 | 12.6 | 12.4 | 13.9 | 13.2 | | | -90 | | min= 11.9 | | 47.0 | 47.7 | | 4=== | | | | | | | | | | n= 333 | | 13.2 | 13.3 | 13.4 | 13.3 | 12.9 | 12.9 | 12.4 | 13.7 | 13.8 | | | - 100 | | •••• | | 13.5 | 13 3 | 13.4 | 17.2 | 17 2 | 13.0 | 17.0 | 17 5 | 1/ 0 | | | 440 | | m. n | | | 13.3 | 13.7 | 13.2 | 13.2 | 13.0 | 13.0 | 13.3 | 14.9 | | | -110 | | ssa = BkGd + (2.4) | | 13.3 | 13.5 | 13.3 | 13.7 | 13.4 | 13.3 | 13.4 | 13.9 | 13.6 | 15.1 | | -120 | | = 16.2 uR/hr | | | | | | | | | , | .5.0 | | | 120 | | | | 13.8 | 14.0 | 13.9 | 13.5 | 13.2 | 13.5 | 13.5 | 13.5 | 14.1 | 13.5 | | - 130 | | SDF SURVEY TOTAL | | | | | | | | | | | | | | | GAMMA EXPOSURE @ 1-m | | 12.8 | 14.1 | 13.7 | 13.2 | 13.6 | 13.8 | 13.7 | 13.5 | 13.6 | 13.5 | 13.0 | -140 | | (uR/hr) | | | | | | | | | | | | | | | | | 14.0 | 13.7 | 14.0 | 13.6 | 13.5 | 13.7 | 13.2 | 12.9 | 13.0 | 13.7 | 13.4 | -150 | | median= 13.8 =8kGd | | | | | | | | | | | | | | | mean= 13.9 | | 13.5 | 13.3 | 13.5 | 13.4 | 13.6 | 13.4 | 13.1 | 12.9 | 13.4 | 12.7 | | -160 | | sdev= 1.0 | | 17 E | 47 / | 47.0 | 47 7 | | | | | | | | | | max= 27.5 | | 13.5 | 13.4 | 13.2 | 13.3 | 13.1 | 13.2 | 13.0 | 12.9 | 12.9 | 12.4 | | -170 | | min= 9.8 | | 13.4 | 13 1 | 13 2 | 13.5 | 17 5 | 17 7 | 17 F | 17 5 | 42.2 | 44.0 | | 400 | | n= 812 | | 10.7 | 13.1 | 13.3 | 13.5 | 13.3 | 13.3 | 13.3 | 12.5 | 12.2 | 17.9 | | -180 | | | | 13.3 | 12.9 | 13.2 | 13.3 | 12.8 | 13.5 | 13.5 | 13 7 | 12 4 | 12 4 | | - 190 | | | | | | | | | , - , - | | 12.1 | 16.0 | 16.4 | | - 170 | | | | 12.6 | 13.0 | 12.7 | 13.3 | 12.8 | 12.7 | 13.0 | 13.3 | 12.7 | 12.0 | | -200 | | | ## Figure 18. Map of West Area Surface Beta Activity - west #### SDF BASELINE SURVEY | | WEST AREA BETA ACTIVITY @ 1-cm (dpm/100cm2) | | | | | | | | | | of 2) | |--------------|---|-------|-------|---------|---------|-------|-------|-------|--------|-------|-------| | | | | | west co | ordinat | te: | | | | | | | | 400 | 390 | 380 | 370 | 360 | 350 | 340 | 330 | 320 | 310 | 300 | | south -1 | 0 | | **** | **** | •••• | | **** | **** | • •••• | 4,153 | 4,844 | | -2 | 0 | | | | | | | | 4,657 | 5,091 | 4,235 | | -3 | 0 | | | | | | | 3,992 | 3,674 | 4,233 | 4,288 | | -4 | 0 | | | | | | 4,287 | 4,103 | 3,487 | 4,341 | 4,237 | | -5 | 0 | | | | | 4,154 | 3,888 | 4,100 | 4,819 | 4,403 | 3,986 | | -6 | 0 | | | 4,986 | 4,271 | 4,378 | 3,993 | 3,010 | 4,138 | 3,621 | 4,412 | | -7 | 0 | 4,719 | 4,461 | 4,274 | 4,188 | 4,046 | 4,159 | 4,330 | 3,501 | 4,313 | 3,792 | | -8 | 0 | 3,630 | 5,161 | 3,564 | 4,135 | 4,352 | 3,706 | 4,066 | 3,594 | 4,850 | 2,837 | | -9 | 0 | 4,022 | 4,645 | 4,018 | 4,084 | 3,967 | 4,092 | 3,382 | 3,116 | 3,721 | 3,561 | | -10 | 0 4,177 | 4,820 | 3,962 | 4,606 | 4,111 | 4,271 | 3,919 | 3,811 | 3,778 | 3,147 | 3,649 | | . -11 | • | 4,195 | | | | | | | | | 3,066 | | -12 | - | 4,631 | | | | - | | | | | d | | -13 | · | 4,574 | · | · | · | · | · | • | · | · | d
 | | -14 | • | · | · | · | · | · | - | - | | | - | | -15 | | 3,647 | · | | | | | | | | | | -16 | | 4,709 | · | | | | | | | · | | | -17 | | 4,361 | | | | | | | | | | | - 18
- 19 | | 3,633 | 2,002 | 4,015 | 3,017 | | | | | | | | - 19 | | | | | | 3,634 | 3,354 | 3,414 | 4,000 | 3,050 | | | -20 | J | | | | | | | | | | 3,295 | ## Figure 18 (cont'd). Map of West Area Surface Beta Activity - east | (WEST AREA BETA ACTIVITY @ 1-cm (dpm/100cm2) | | | | | | | n2) | page 2 | of 2 | | | | | |--|-------|--------|----------|-------|--------|--------|-----------|--------|--------|-------|-------|------------|--------------------------------------| | | | west o | coordina | ite: | | | | | (cont' | d) | | | | | 290 | 280 | 270 | 260 | 250 | 240 | 230 | 220 | 210 | 200 | | | | • | | 4,047 | 4,179 | 4,180 | 3,994 | 3,513 | • •••• | • •••• | • • • • • | • •••• | | | -10 | south | | | 4,102 | 3,008 | 3,807 | 3,618 | 4,177 | 3,810 | | | | | | -20 | coordinate | | | 3,940 | 3,674 | 3,863 | 4,500 | 3,117 | 5,382 | | | | | | -30 | | | | 3,913 | 3,808 | 3,410 | 4,473 | 3,781 | 3,755 | 3,090 | | | | | -40 | | | | 4,356 | 4,401 | 4,408 | 4,297 | 4,331 | 4,060 | 3,798 | | | | | -50 | | WEST AREA | | 3,956 | 3,511 | 4,124 | 4,043 | 4,779 | 4,080 | 4,230 | 3,758 | | | | -60 | | BETA ACTIVITY @ 1-cm
(dpm/100cm2) | | đ | 3,864 | 3,335 | 3,866 | 4,253 | 3,645 | 4,053 | | | | | -70 | | median= 3,969 | | đ | 3,783 | 3,905 | 3,430 | 3,638 | 3,997 | 4,412 | 4,421 | | | | -80 | | mean= 3,975
sdev= 482 | | 3,375 | 4,251 | 4,016 | 4,301 | 3,564 | 3,803 | 3,317 | 4,385 | 4,281 | | | -90 | | max= 5,382
min= 2,837 | | 4,550 | 3,833 | 4,218 | 3,946 | 4,135 | 4,431 | 3,630 | 4,719 | 3,930 | | | -100 | | n= 333 | | 4,553 | 4,013 | 4,458 | 4,461 | 4,061 | 4,491 | 3,402 | 3,863 | 4,025 | | | -110 | | ssa = BkGd + (1,291) | | 3,785 | 4,188 | 4,426 | 4,377 | 5,034 | 4,075 | 3,880 | 4,159 | 4,176 | 4,606 | | -120 | | = 5,498 dpm/100cm2 | | 4,382 | 3,545 | 3,960 | 4,165 | 4,523 | 4,069 | 3,674 | 3,448 | 4,103 | 3,259 | | -130 | | SDF SURVEY TOTAL | | 3,725 | 3,382 | 3,405 | 3,420 | 3,734 | 4,315 | 4,474 | 4,218 | 4,094 | 3,818 | 3,737 | -140 | | BETA ACTIVITY a 1-cm (dpm/100cm2) | | 4,103 | 3,852 | 3,561 | 4,311 | 4,440 | 4,433 | 3,785 | 3,953 | 3,718 | 3,457 | 3,418 | -150 | | median= 4,207 =BkGd | | 3,854 | 3,969 | 3,589 | 3,653 | 4,002 | 3,819 | 4,202 | 2,867 | 4,234 | 4,076 | | -160 | | mean= 4,200
sdev= 555 | | 4,703 | 3,647 | 3,589 | 3,354 | 3,937 | 3,695 | 2,941 | 3,329 | 3,591 | 2,889 | | - 170 | | max= 6,215
min= 2,326 | | 3,511 | 4,016 | 3,866 | 3,983 | 3,967 | 3,743 | 4,311 | 3,732 | 2,902 | 3,165 | | -180 | | n= 811 | | 3,684 | 3,875 | 3,181 | 3,706 | 3,282 | 3,879 | 4,605 | 4,620 | 4,871 | 4,140 | | -190 | | | | 3,598 | 3,735 | 3,056 | 3,082 | 3,213 | 3,260 | 3,667 | 4,576 | 3,810 | 3,084 | | -200 | | | ## Figure 19. Map of West Area Locations With Statistically Significant Gamma Exposure - west SDF BASELINE SURVEY (page 1 of 2) WEST AREA: LOCATIONS WITH STATISTICALLY SIGNIFICANT GAMMA EXPOSURE @ 1-m (uR/hr above ssa) West coordinate: | west coordinate: | | | | | | | | | | | | | |------------------|-------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|-----| | | | 400 | 390 | 380 | 370 | 360 | 350 | 340 | 330 | 320 | 310 | 300 | | south | -10 | | | | | | | | | | • | • | | | -20 | | | | | | | | | • | • | • | | |
-30 | | | | | | | | 0.1 | • | • | • | | | -40 | | | | | | | | | • | • | • | | | -50 | | | | | | | • | | • | • | • | | | -60 | | | | • | • | • | • | | • | • | • | | | -70 | | 1.6 | assa | • | • | • | • | • | | • | | | | -80 | | 1.2 | • | - | • | • | • | • | • | • | • | | | -90 | | assa | • | • | • | • | • | • | | • | • | | | - 100 | 1.2 | • | • | • | | • | • | • | | • | • | | | -110 | 0.1 | • | • | • | • | • | • | • | | • | • | | | - 120 | . • | • | • | • | • | | • | | | - | | | • | - 130 | • | • | • | • | • | • | - | | • | • | | | | 140 | | • | • | • | • | • | • | • | • | • • | • | | | - 150 | | • | • | • | • | • | • | | | • | • | | • | - 160 | • | - | • | | • | | • | • | • | • | • | | | - 170 | • | • | • | | • | | | • | • | | | | | - 180 | • | • | | | | | | . • | | | | | | - 190 | | | | | | | | | • | • | | | - | -200 | | | | | | | | | | | • | # Figure 19 (cont'd). Map of West Area Locations With Statistically Significant Gamma Exposure - east page 2 of 2 (cont'd) (WEST AREA: LOCATIONS WITH STATISTICALLY SIGNIFICANT GAMMA EXPOSURE @ 1-m (uR/hr above ssa) West coordinate: | | | west co | ordinat | e: | | | | | | | | | | |-----|-----|---------|---------|-----|-----|-----|-----|-----|-----|-----|------|------------|----------------------| | 290 | 280 | 270 | 260 | 250 | 240 | 230 | 220 | 210 | 200 | 190 | • | • | • | • | • | | | | | | | -10 | south | | | | | | | | | | | | | | | coordinate | | | • | • | • | • | • | • | | • | | | | -20 | | | | | | | | | | | | | | | | | | | • | ٠ | • | • | • | • | • | | | | | -30 | | | | | | | | | | | | | | | | | | | • | • | • | • | • | • | • | | | | | -40 | | | | | | | | | | | | | | | | • | | | • | • | • | • | • | • | • | | | | | -50 | | WEST AREA | | | | | | | | | | | | | | | GAMMA EXPOSURE @ 1-m | | • | • | • | • | • | • | • | • | | | | -60 | | (uR/hr) | | | | | | | | | | | | | | | | | | • | • | • | • | • | • | | | | | -70 | | median= 13.5 | | | | | | | | | | | | | | | mean= 13.8 | | | • | • | • | • | • | • | • | | | | -80 | | sdev= 0.9 | | | | | | | | | | | | | | | max= 17.8 | | • | • | • | • | • | • | • | • | • | | | -90 | | min= 11.9 | | | | | | | | | | | | | | | n= 333 | | • | • | • | • | • | • | • | • | • | | | -100 | | **** | | | | | | | | | | | | | | | | | • | • | • | • | • | • | • | • | • | | | -110 | | ssa = 8kGd + (2.4) | | | | | | | | | | | | | | | = 16.2 uR/hr | | • | • | • | • | • | • | • | • | • | • | | -120 | | | | | | | | | | | | | | | | | | | • | • | • | • | • | • | • | • | • | • | | -130 | | SDF SURVEY TOTAL | | | | | | | | | | | | | | | GAMMA EXPOSURE @ 1-m | | • | • | • | • | • | • | • | • | • | • | • | -140 | | (uR/hr) | | | | | | | | | | | | | 4== | | | | • | • | • | • | • | • | • | • | • | • | • | -150 | | median= 13.8 =8kGd | | | , | | | | | | | | | | | | mean= 13.9 | | • | • | • | • | • | • | • | • | • | • | | -160 | | sdev= 1.0 | | | | | | | | | | | | | | | max= 27.5 | | • | • | • | • | • | • | • | • | • | • | | -170 | | min= 9.8 | | | | | | | | | | | | | | | n= 812 | | • | • | • | • | • | • | • | • | • | • | | -180 | | | | | | | | | | | | | | | 400 | | | | • | • | • | • | • | • | • | • | • | • | | -190 | | | | | | | | | | | | | | | | | | | • | • | • | • | • | • | • | • | • | • | | -200 | | | 7.5 Northwest Area: A statistical summary of the Northwest Area survey results are presented in Table 6-1. SSA values have been estimated from the Northwest Area data so the area data can be compared to the overall site data. The averaged radiation levels for each location on the sample grid for the Northwest Area are presented in Table 6-2. The radiation levels for each 10-ft grid interval are shown in map format in Figure 20 (Gamma Activity), Figure 21 (Gamma Exposure), and Figure 22 (Beta Activity). The survey found four locations having statistically significant gamma activity. These locations are mapped in Figure 23 (Gamma Exposure). No statistically significant surface beta activity was recorded. The four locations in the Northwest Area having statistically significant gamma activity, are all only marginally above normal background, and all are near siltstone rock formations. The comments from section 7.4 (West Area) also apply to the Northwest Area, and the slightly high readings at these four locations are due to the influence of the higher natural background radiation levels of the rock. | NORTHWEST | | | AVG GAMMA
al-m(cpm) | AVG BETA
al-cm(dpm) | AVG GAMM/
EXPOSURE
(UR/Hr) | AVG BETA
(dpm/100cm2) | |-----------|--------|-------|------------------------|------------------------|----------------------------------|--------------------------| | AREA | median | = | 3128 | 866 | 4/ 5 | / 774 | | | | | | | 14.5 | 4,331 | | SUMMARY | mean | = | 3177 | 848 | 14.8 | 4,242 | | | sdev | = | 205 | 103 | 1.0 | 517 | | | max | = | 3954 | 1.037 | 18.4 | 5,185 | | | min | = | 2798 | 465 | 13.0 | 2,326 | | | n | = | 65 | 64 | 65 | 64 | | | | | | •••• | | | | ssa based | | | 3128 | 866 | 14.5 | 4,331 | | on north | lest | | + 476 | + 241 | + 2.2 | + 1,203 | | area | data: | = | 3606 | 1,108 | 16.8 | 5,539 | | | | | | | | | | ssa based | | 8kGd= | 2966 | 841 | 13.8 | 4,207 | | on tota | ı | | + 523 | + 258 | + 2.4 | + 1,291 | | SULLA | data: | = | 3489 | 1,099 | 16.2 | 5,498 | | Juivey | uata. | - | 3407 | 1,077 | 10.2 | 3,470 | | | •••• | • • • | | **** | | | Table 6-1. Statistical Summary of Northwest Area Survey Results. Table 6-2. Northwest Area -- Averaged Radiation Levels at Each Survey Location. | MORTHLEST | AREA: | Averaged | Rad | Level | at | Each | Location | |-----------|-------|----------|-----|-------|----|------|----------| | | | | | | | | | | | | | | | AVG GAMM | ` | |----------|----------------|----------------|---|----------------------------------|------------------|----------------| | SDF | N/S | WEST | D | AVG GAMMA AVG BETA | EXPOSURE | AVG BETA | | | COORD | COORD | | 21-m(cpm) 21-cm(dpm) | (uR/Hr) | (dpm/100cm2) | | | 120 4 | 247 11 | ? | 70F/ 1 0// | 40 / 1 | 4,331 | | NA
Na | 120 N
120 N | 217 W
210 W | | 3954 ! 866
3484 ! 923 | 18.4 !
16.2 ! | 4,613 | | NW | 120 N | 200 W | | 3352 899 | 15.6 | 4,497 | | W | 120 N | 190 W | | 3132 845 | 14.6 | 4,227 | | NW | 120 N | 180 W | | 3052 888 | 14.2 | 4,442 | | NA
NA | 120 N
110 N | 170 W
220 W | đ | 3133 (wet baranca)
3685 ! 862 | 14.6 | 4,311 | | NW. | 110 N | 210 W | | 3371 1,026 | 15.7 | 5,131 | | NW | 110 N | 200 W | | 3244 895 | 15.1 | 4,474 | | W | 110 N | 190 W | | 3048 1,037 | 14.2 | 5,185 | | W | 100 N | 230 W | | 3650 ! 943 | 17.0 ! | 4,714 | | NW
NW | 100 N
100 N | 220 W
210 W | | 3458 824
3218 811 | 16.1
15.0 | 4,119
4,055 | | NW | 100 N | 200 W | | 3126 878 | 14.5 | 4,392 | | NW | 100 N | 190 W | | 3057 926 | 14.2 | 4.631 | | W | 100 N | 180 W | | 3153 873 | 14.7 | 4,366 | | NW | 90 N | 240 W | | 3470 879 | 16.1 | 4,394 | | NW
NW | 90 N
90 N | 230 W
220 W | | 3335 755
3428 917 | 15.5
15.9 | 3,776
4,585 | | NW | 90 N | 210 W | | 3026 750 | 14.1 | 3.751 | | NW | 90 N | 200 W | | 2979 868 | 13.9 | 4,339 | | NW | 90 N | 190 W | | 3021 764 | 14.1 | 3,819 | | WW | 80 N
80 N | 240 W | | 3274 952 | 15.2
14.5 | 4,758
4,574 | | NW
NW | 80 N | 230 W
220 W | | 3123 915
- 3092 757 | 14.4 | 3,785 | | NW | 80 N | 210 W | | 2992 725 | 13.9 | 3,626 | | WK | 80 N | 200 W | | 2903 764 | 13.5 | 3,818 | | NW | 80 N | 190 W | d | (drain) | •= / | / 220 | | NW
NW | 70 M
70 M | 230 W
220 W | | 3302 846
3128 733 | 15.4
14.5 | 4,228
3,667 | | XW | 70 N | 210 W | | 3097 716 | 14.4 | 3,578 | | NW | 70 N | 200 W | | 3048 812 | 14.2 | 4,059 | | NW | 70 N | 190 W | ď | (drain) | | | | NW. | 60 N | 230 W | | 3111 736
3003 657 | 14.5
14.0 | 3,681
3,283 | | NW
NW | 60 N
60 N | 220 W
210 W | | 3050 925 | 14.2 | 4,627 | | NH | 60 N | 200 W | d | (drain) | | • | | WW | 50 N | 240 W | | 3245 917 | 15.1 | 4,584 | | MM
MM | 50 N
50 N | 230 W
220 W | | 3140 465
3142 751 | 14.6
14.6 | 2,326
3,754 | | KW | 50 N | 210 W | | 2868 799 | 13.3 | 3,994 | | NW | 40 N | 250 W | | 3406 852 | 15.8 | 4,259 | | WW | 40 N | 240 W | | 3258 932 | 15.2 | 4,662 | | WW | 40 N | 230 W | | 3237 985
2798 676 | 15.1 | 4,926
3,382 | | NW
NW | 40 N
30 N | 220 W
260 W | | 2798 676
3204 794 | 13.0
14.9 | 3,362
3,970 | | NU | 30 N | 250 W | | 3185 862 | 14.8 | 4,312 | | NW | 30 N | 240 W | | 3300 926 | 15.3 | 4,632 | | MM | 30 N | 230 W | | 2953 746 | 13.7 | 3,728 | | NW
NW | 30 N
30 N | 220 W
210 W | | 3018 926
3009 948 | 14.0
14.0 | 4,629
4,738 | | NU | 30 N | 200 W | | 3025 804 | 14.1 | 4,021 | | NW | 20 N | 270 W | | 3341 948 | 15.5 | 4,740 | | NW | 20 N | 260 W | | 3140 889 | 14.6 | 4,445 | | W | 20 N | 250 W | | 3079 868
2859 804 | 14.3 | 4,340
4,020 | | NW
NW | 20 N
20 N | 240 W
230 W | | 2859 804
3042 930 | 13.3
14.1 | 4,650 | | NW | 10 N | 270 W | | 3207 922 | 14.9 | 4,608 | | NW | 10 N | 260 W | | 3080 916 | 14.3 | 4,580 | | NW | 10 N | 250 W | | 3069 704
7040 744 | 14.3 | 3,518 | | nw
Nw | 10 N
0 N | 240 W
300 W | | 3040 746
3408 991 | 14.1
15.9 | 3,729
4,953 | | NW | O N | 290 W | | 3420 996 | 15.9 | 4,980 | | NW | G N | 280 W | | 3291 990 | 15.3 | 4,952 | | NW | O N | 270 W | | 3151 841 | 14.7 | 4,207 | | WW. | 0 N | 260 W
250 W | | 3063 698
2035 947 | 14.2
13.7 | 3,489
4,737 | | NW
NW | 0 N
0 N | 250 W | | 2935 947
3078 756 | 14.3 | 3,779 | | | | 240 W | | 3070 730 | ,,,,, | | numapdat.wk1, 5aug92, 17:20p. SDF SURVEY TOTAL Figure 20. Northwest Area Map of Ambient Gamma Activity. #### NORTHWEST AREA AMBIENT GAMMA ACTIVITY @ 1-m (cpm) | | | | | | | · | TOR THE | | est co | | | | (Ор.,) | | | |-------|-----|------|-----|-----|-------|------|---------|------|--------|------|------|------|--------|------|------| | | | 300 | 290 | 280 | 270 | 260 | 250 | 240 | 230 | 220 | 210 | 200 | 190 | 180 | 170 | | north | 120 | •••• | | | ***** | | | | **** | 3954 | 3484 |
3352 | 3132 | 3052 | 3133 | | | 110 | | | | | | | | | 3685 | 3371 | 3244 | 3048 | | | | | 100 | | | | | | | | 3650 | 3458 | 3218 | 3126 | 3057 | 3153 | | | | 90 | | | | | | | 3470 | 3335 | 3428 | 3026 | 2979 | 3021 | | | | | 80 | | | | | | | 3274 | 3123 | 3092 | 2992 | 2903 | d | | | | | 70 | | | | | | | | 3302 | 3128 | 3097 | 3048 | đ | | | | | 60 | | | - | | | | | 3111 | 3003 | 3050 | d | | | | | | 50 | | | | | | | 3245 | 3140 | 3142 | 2868 | | | | | | | 40 | | | | | | 3406 | 3258 | 3237 | 2798 | | | | | | | | 30 | | | | | 3204 | 3185 | 3300 | 2953 | 3018 | 3009 | 3025 | | | | | | 20 | | | | 3341 | 3140 | 3079 | 2859 | 3042 | | | | | | | | | 10 | | | | 3207 | 3080 | 3069 | 3040 | | | | | | | | 3151 3063 2935 3078 | AMBIEN | IT GAM | MA @ 1-m | | AMBIEN | T GA | MMA @ 1-m | |--------|--------|----------|--------------------|---------------|------|-----------| | a | vg cp | m | | а | vg c | pm pm | | | | | | **** | | | | median | = | 3128 | | 8kGd = median | = | 2966 | | mean | = | 3177 | | mean | = | 2996 | | sdev | = | 205 | | sdev | = | 225 | | max | = | 3954 | | max | = | 5914 | | min | = | 2798 | ssa = BkGd + (523) | min | = | 2097 | | n | = | 65 | = 3489 cpm | n | = | 812 | * note: Four locations with statistically significant gamma activity were found. 3408 3420 3291 NORTHWEST AREA Figure 21. Northwest Area Map of Gamma Exposure. #### NORTHWEST AREA AMBIENT GAMMA EXPOSURE @ 1-m (uR/hr) | | | west coordinate: | | | | | | | | | | | | | | |-------|-----|------------------|------|------|------|-------|------|-------|------|------|------|------|------|------|------| | | | 300 | 290 | 280 | 270 | 260 | 250 | 240 | 230 | 220 | 210 | 200 | 190 | 180 | 170 | | north | 120 | ***** | | **** | | ***** | **** | ***** | •••• | 18.4 | 16.2 | 15.6 | 14.6 | 14.2 | 14.6 | | | 110 | | | | | | | | | 17.1 | 15.7 | 15.1 | 14.2 | | | | | 100 | | | | | | | | 17.0 | 16.1 | 15.0 | 14.5 | 14.2 | 14.7 | | | | 90 | | | | | | | 16.1 | 15.5 | 15.9 | 14.1 | 13.9 | 14.1 | | | | | 80 | | | | | | | 15.2 | 14.5 | 14.4 | 13.9 | 13.5 | đ | | | | | 70 | | | | | | • | | 15.4 | 14.5 | 14.4 | 14.2 | đ | | | | | 60 | | | | | | | | 14.5 | 14.0 | 14.2 | đ | | | | | | 50 | | | | | | | 15.1 | 14.6 | 14.6 | 13.3 | | | | | | | 40 | | | | | | 15.8 | 15.2 | 15.1 | 13.0 | | | | | | | | 30 | | | | | 14.9 | 14.8 | 15.3 | 13.7 | 14.0 | 14.0 | 14.1 | | | | | | 20 | | | | 15.5 | 14.6 | 14.3 | 13.3 | 14.1 | • | | | | | | | | 10 | | | | 14.9 | 14.3 | 14.3 | 14.1 | | | | | | | | | | 0 | 15.9 | 15.9 | 15.3 | 14.7 | 14.2 | 13.7 | 14.3 | | | | • | | | | | NORT | THWEST | AREA | | SDF S | SURVEY | TOTAL | |--------|--------|-----------|--------------------|---------------|--------|----------| | GAMMA | EXPOS | URE @ 1-m | | GAMMA 1 | EXPOSU | RE @ 1-m | | | uR/hr | | | | uR/hr | | | | | | | *** | | | | median | = | 14.5 | | BkGd = median | = | 13.8 | | mean | = | 14.8 | | mean | = | 13.9 | | sdev | = | 1.0 | | sdev | = | 1.0 | | max | = | 18.4 | | max | = | 27.5 | | min | = | 13.0 | ssa = BkGd + (2.4) | min | = | 9.8 | | n | = | 65 | = 16.2 uR/hr | n | = | 812 | $[\]mbox{*}$ note: Four locations with statistically significant gamma exposure were found. Figure 22. Northwest Area Map of Surface Beta Activity. #### NORTHWEST AREA BETA ACTIVITY (dpm/100cm2) | west | coordinate: | | |------|-------------|--| |------|-------------|--| | | | 300 | 290 | 280 | 270 | 260 | 250 | 240 | 230 | 220 | 210 | 200 | 190 | 180 | 170 | |-------|-----|-------|-------|-------|-------|-------------|--------|-------|-------|-------|----------------|-------|-------|-------|-----| | north | 120 | | **** | ***** | | • • • • • • | • •••• | | | 4,331 | 4,613 | 4,497 | 4,227 | 4,442 | d | | | 110 | | | | | | | | | 4,311 | 5,131 | 4,474 | 5,185 | | | | | 100 | | | | | | | | 4,714 | 4,119 | 4,055 | 4,392 | 4,631 | 4,366 | | | | 90 | | | | | | | 4,394 | 3,776 | 4,585 | 3,751 | 4,339 | 3,819 | | | | | 80 | | | | | | | 4,758 | 4,574 | 3,785 | 3,626 | 3,818 | đ | | | | | 70 | | | | | | | | 4,228 | 3,667 | 3,578 | 4,059 | d | | | | | 60 | | | | | | | | 3,681 | 3,283 | 4,627 | d | | | | | | 50 | | | | | | | 4,584 | 2,326 | 3,754 | 3,994 | | | | | | | 40 | | | | | | 4,259 | 4,662 | 4,926 | 3,382 | | | | | | | | 30 | | | | | 3,970 | 4,312 | 4,632 | 3,728 | 4,629 | 4 <i>,7</i> 38 | 4,021 | | | | | | 20 | | | | 4,740 | 4,445 | 4,340 | 4,020 | 4,650 | | | | | | | | | 10 | | | | 4,608 | 4,580 | 3,518 | 3,729 | | | | | | | | | | 0 | 4,953 | 4,980 | 4,952 | 4,207 | 3,489 | 4,737 | 3,779 | | • | | | | | | | NORT | HWES1 | AREA | SDF | SURVEY | TOTAL | |---------|--------|-----------|--------------------------|------------|----------| | BETA AC | TIVIT | ry a 1-cm | BETA | ACT I VI T | Y a 1-cm | | d | ipm/10 | 10cm2 | | dpm/10 | 10cm2 | | | | | | | | | median | = | 4,331 | BkGd = median | = | 4,207 | | mean | = | 4,242 | mean | = | 4,200 | | sdev | = | 517 | sdev | = | 555 | | max | = | 5,185 | max | = | 6,215 | | min | = | 2,326 | ssa = BkGd + (1,291) min | = | 2,326 | | n | = | 64 | = 5,498 dpm/100cm2 n | = . | 811 | Figure 23. Northwest Area Map of Locations with Statistically Significant Gamma Exposure. NORTHWEST AREA: STATISTICALLY SIGNIFICANT GAMMA EXPOSURE @ 1-m (uR/hr above ssa) west coordinate: 2.2 coordinate: 0.9 0.8 | NOR | THWEST | ARFA | | | | | |--------|---------|----------|---|-----------------|--------|----------| | | | | | SDF | SURVEY | TOTAL | | GAMMA | EXPOSU | IRE @ 1- | m · | GAMMA | EXPOSU | RE a 1-m | | | uR/hr | | | | uR/hr | | | | | | | | | | | median | = | 14.5 | , | BkGd = median | = | 13.8 | | mean | = | 14.8 | | mean | = | 13.9 | | sdev | = | 1.0 | | sdev | = | 1.0 | | max | = | 18.4 | | max | = | 27.5 | | min | = | 13.0 | ssa = BkGd + (2.4) | min | = | 9.8 | | n | = | 65 | = 16.2 uR/hr | n | = | 812 | | 1 | * note: | Four la | cations with statistically significant gamma ex | mosure were fou | nd | | 7.6 Northeast Area: A statistical summary of the Northeast Area survey results are presented in Table 7-1. SSA values have been estimated from the Northeast Area data so the area data can be compared to the overall site data. The averaged radiation levels for each location on the sample grid for the Northeast Area are presented in Table 7-2. The radiation levels for each 10-ft grid interval are shown in map format in Figure 24 (Gamma Activity), Figure 25 (Gamma Exposure), and Figure 26 (Beta Activity). No statistically significant ambient gamma or surface beta activity was recorded in the Northeast Area. All survey readings were indistinguishable from normal background radiation. Five locations in the Northeast Area could not be surveyed due to obstructions. | | | | | AVG GAMM | A | |--------------|---|-----------|------------|----------|--------------| | | | AVG GAMMA | AVG BETA | EXPOSURE | AVG BETA | | | | @1-m(cpm) | a1-cm(dpm) | (uR/Hr) | (dpm/100cm2) | | NORTHEAST | | | | | | | AREA median | = | 2966 | 900 | 13.8 | 4,500 | | SUMMARY mean | = | 2948 | 889 | 13.7 | 4,445 | | sdev | = | 126 | 90 | 0.6 | 450 | | max | = | 3188 | 1,075 | 14.8 | 5,373 | | min | = | 2097 | 655 | 9.7 | 3,275 | | n | = | 208 | 208 | 208 | 208 | | ssa based | | 2966 | 900 | 13.8 | 4,500 | | on northeast | | + 293 | + 209 | + 1.4 | + 1,047 | | area data: | = | 3259 | 1,109 | 15.2 | 5,547 | | ssa based | | 2966 | 841 | 13.8 | 4,207 | | on total | | + 523 | + 258 | + 2.4 | + 1,291 | | survey data: | = | 3489 | 1,099 | 16.2 | 5,498 | | | | | | | | Table 7-1. Statistical Summary of Northeast Area Survey Results. Table 7-2. Northeast Area -- Averaged Radiation Levels at Each Survey Location. | | F N/S
EA COORD | WEST | D AVG GAMMA
al-m(cpm) | a1-cm(dpm) | AVG GAMMA
EXPOSURE
(UR/Hr) | AVG BETA
(dpm/100cm2) | SDF
AREA | M/S
COORD | COORD | | A AVG BETA | EXPOSURE
(uR/Hr) | AVG BETA
(dps://100cm2 | |----------|-------------------|----------------|--------------------------|-------------|----------------------------------|----------------------------|-------------|----------------|--------------|----------------|---------------|---------------------|---------------------------| | | | 420 | ? | 802 | 17 4 | 4,011 | NE | 110 N | 100 W | 2715 | 861 | 12.6 | 4,306 | | NE | 160 N
160 N | 120 W | 2918
2939 | 743 | 13.6
13.7 | 3,716 | NE | 110 N | 90 W | 2838 | 917 | 13.2 | 4,587 | | HE | 160 N | 100 W | 2880 | 860 | 13.4 | 4,301 | HE | 110 N | 80 W | 2858 | 899 | 13.3 | 4,495 | | HE | 160 N | 90 W | 3045 | 917 | 14.1 | 4,583 | NE | 110 N | 70 W | * 2933 | 859 | 13.6 | 4,296 | | HE | 160 N | 80 W | 3019 | 943 | 14.0 | 4,717 | NE | 110 N | 60 W | 2930 | 942 | 13.5 | 4,712 | | NE | 160 N | 70 W | 3050 | 1066 | 14.2 | 5,329 | HE | 110 N | 50 W | * 3005 | 863 | 14.0 | 4,316 | | NE | 160 N | 60 W | 3018 | 1075 | 14.0 | 5,373 | NE | 110 N | 110 W | | | .7.0 | / 4/7 | | XE | 160 N | 50 W | 3055 | 936 | 14.2 | 4,679 | HE | 100 H | 170 W | 2988
3018 | 929
835 | 13.9
14.0 | 4,643
4,175 | | NE | 160 N | 40 W | 2991 | 918 | 13.9 | 4,592 | NE
NE | 100 N
100 N | 160 W | 3052 | 906 | 14.2 | 4,532 | | NE | 160 N | 30 W | * 2980
3130 | 1008
938 | 13.9 | 5,039 | NE
NE | 100 N | 140 W | 2954 | 981 | 13.7 | 4,906 | | NE
NE | 150 N
150 N | 150 W
140 W | 29 83 | 938
845 | 14.5
13.9 | 4,691
4,226 | XE | 100 N | 130 W | 3001 | 792 | 13.9 | 3,962 | | NE | 150 N | 130 W | 2969 | 880 | 13.8 | 4,399 | ЖE | 100 N | 120 W | * 2708 | 916 | 12.5 | 4,580 | | NE | 150 N | 120 W | 2977 | 745 | 13.8 | 3.723 | NE | 100 N | 100 W | 2648 | 976 | 12.3 | 4,878 | | NE | 150 N | 110 W | 2891 | 918 | 13.4 | 4,589 | NE | 100 N | 90 W | 2772 | 355 | 12.9 | 4,276 | | NE | 150 N | 100 W | 2969 | 771 | 13.8 | 3,854 | NE | 100 N | 80 W | 2936 | 779 | 13.6 | 3,894 | | ME | 150 N | 90 W | 2938 | 1001 | 13.6 | 5,004 | NE | 100 N | 70 ¥ | 2986 | 338
948 | 13.9 | 4,191 | | NE | 150 N | 80 W | 2929 | 993 | 13.6 | 4,963 | NE | 100 N | 60 W | 2927
* 3081 | 955 | 13.5
14.3 | 4,739
4,776 | | ME | 150 N | 70 W | 2977 | 1027 | 13.8 |
5,136 | NE
NE | 100 N | 110 W | - 3001 | 733 | 14.5 | 4,770 | | NE
NE | 150 N
150 N | 60 U
50 U | 2960
• 2929 | 895
873 | 13.8
13.6 | 4,474
4,364 | XE | 90 N | 180 ¥ | 3105 | 988 | 14.4 | 4,938 | | HE. | 150 N | 40 W | 2994 | 1038 | 13.9 | 5,189 | HE | 90 N | 170 W | 2986 | 854 | 13.9 | 4,269 | | XE | 140 N | 150 W | 3001 | 890 | 13.9 | 4,449 | NE | 90 N | 160 W | 2943 | 1049 | 13.7 | 5,247 | | NE | 140 N | 140 W | 2980 | 940 | 13.8 | 4,700 | NE | 90 N | 150 ¥ | 2906 | 967 | 13.5 | 4,336 | | NE | 140 N | 130 W | 2949 | 806 | 13.7 | 4,032 | NE | 90 N | 148 W | 2491 | 839 | 11.5 | 4,195 | | NE | 140 N | 120 W | 2896 | 784 | 13.5 | 3,921 | HE | 90 N | 130 W | 2097 | 1068 | 9.7
10.3 | 5,339
4,331 | | HE | 140 N | 110 W | 2881 | 816 | 13.4 | 4,078 | NE
NE | 90 N | 120 W | 2319
2840 | 866 -
1029 | 13.2 | 5,145 | | NE | 140 N | 100 W | 2780
2833 | 974
924 | 12.9
13.2 | 4,870 | HE
HE | 90 N | 100 W | 2927 | 1036 | 13.6 | 5.182 | | NE
NE | 140 N | 90 W
80 W | 2833
2933 | 924
984 | 13.2 | 4,622
4,920 | XE | 90 N | 90 W | 2865 | 944 | 13.3 | 4.719 | | . NE | 140 N | 70 W | 2974 | 937 | 13.8 | 4,684 | NE | 90 N | 80 W | 2954 | 930 | 13.7 | 4,549 | | NE. | 140 N | 60 W | 2947 | 888 | 13.7 | 4,440 | NE | 90 N | 70 W | 2917 | 900 | 13.5 | 4,502 | | NE | 140 N | 50 W | • 2912 | 890 | 13.6 | 4,449 | NE | 90 N | 50 W | * 3069 | 832 | 14.3 | 4,158 | | KE | 140 N | 40 W | 2959 | 950 | 13.7 | 4,749 | NE | 90 N | 60 W | | 4.7 | | | | XE | 130 N | 160 W | 3188 | 926 | 14.8 | 4,629 | NE | 80 N | 180 W | 3075
3037 | 967
947 | 14.3
14.1 | 4,836
4,735 | | XE | 130 N | 150 W | 2966 | 773 | 13.8 | 3,864 | NE
NE | 80 N
80 N | 160 W | 2989 | 863 | 13.9 | 4,315 | | HE | 130 N
130 N | 140 W
130 W | 2931
2811 | 901
713 | 13.6
13.1 | 4,507
3,5 64 | NE | 80 N | 150 W | 3108 | 1045 | 14.4 | 5,224 | | NE
NE | 130 N | 120 W | 2872 | 894 | 13.3 | 4,472 | NE | 80 N | 140 W | 3000 | 866 | 13.9 | 4,331 | | ME | 130 N | 110 W | 2855 | 815 | 13.3 | 4,076 | HE | 80 N | 130 W | 2909 | 971 | 13.5 | 4,855 | | ME | 130 N | 100 W | 2870 | 856 | 13.3 | 4,278 | NE | 80 N | 110 W | 2476 | 995 | 11.5 | 4,977 | | HE | 130 N | 90 W | 2897 | 821 | 13.5 | 4,106 | ME | 80 N | 100 W | 2597 | 900 | 12.1 | 4,500 | | WE | 130 H | 80 W | 2875 | 933 | 13.4 | 4,663 | NE | 80 N | 90 W
80 W | 2936
2843 | 978
781 | 13.6
13.2 | 4,891
3.903 | | NE | 130 M | 70 W | 2847 | 916
902 | 13.2 | 4,578 | NE
NE | 80 N
80 N | 70 W | 2918 | 942 | 13.6 | 4.709 | | HE | 130 H
130 N | 60 W | 2953
* 3010 | 902
974 | 13.7
14.0 | 4,509
4,867 | XE | 80 N | 60 W | 2937 | 973 | 13.6 | 4,364 | | HE | 130 X | 40 W | 3013 | 970 | 14.0 | 4.850 | NE | 80 N | 50 W | * 2995 | 730 | 13.9 | 3,651 | | NE | 120 N | 160 W | 2977 | 743 | 13.8 | 3,714 | NE | 80 N | 120 W | | | | | | NE | 120 N | 150 W | 2956 | 694 | 13.7 | 3,469 | NE | 70 H | 180 W | 3028 | 916 | 14.1 | 4,581 | | ME | 120 N | 148 W | 2880 | 786 | 13.4 | 3,928 | . NE | 70 N | 170 ¥ | 2974 | 765 | 13.8 | 3,826 | | NE | 120 N | 130 W | 2904 | 815 | 13.5 | 4,076 | NE
NE | 70 N
70 N | 160 W | 2998
2988 | 788
924 | 13.9
13.9 | 3,942
4,622 | | HE | 120 H | 120 W | 2813 | 868 | 13.1 | 4,340 | AE
XE | 70 N | 130 W | 2900
2921 | 925 | 13.6 | 4,627 | | HE | 120 N
120 N | 110 W | 2800
2871 | 980
924 | 13.0
13.3 | 4,901
4,618 | WE
WE | 70 N | 120 W | 2637 | 897 | 12.3 | 4,486 | | WE | 120 M | 90 W | 2862 | 956 | 13.3 | 4,781 | HE | 70 N | 110 W | 2859 | 908 | 13.3 | 4,541 | | ME | 120 N | 80 W | 2912 | 932 | 13.5 | 4,659 | NE | 70 N | 100 W | 2874 | 830 | 13.4 | 4,149 | | ME | 120 N | 70 W | 2955 | 950 | 13.7 | 4,749 | HE | 70 N | 90 W | 2962 | 1048 | 13.8 | 5,242 | | WE | 120 N | 60 W | 2939 | 909 | 13.7 | 4,544 | ЖE | 70 N | 80 W | 2970 | 946 | 13.8 | 4,728 | | ME | 120 N | 50 W | * 3031 | 927 | 14.1 | 4,636 | NE | 70 N | 70 W | 2957 | 900
937 | 13.7
14.5 | 4,500 | | WE | 110 N | 180 W | 3083 | 919 | 14.3 | 4,596 | XE
XE | 70 N
70 N | 60 W | 3118
• 2971 | 937
847 | 13.8 | 4,686
4,233 | | NE
NE | 110 N
110 N | 170 W | 3096
2962 | 813
919 | 14.4
13.8 | 4,066
4,595 | XE
NE | 70 N | 148 W | 47/1 | O=1 | 13.0 | دد. | | HE
HE | 110 M | 150 W | 2882 | 850 | 13.4 | 4,249 | XE | 60 N | 190 W | 2908 | 906 | 13.5 | 4,532 | | HE | 110 N | 148 W | 2879 | 701 | 13.4 | 3.504 | NE | 60 N | 180 W | 2951 | 751 | 13.7 | 3,755 | | HE | 110 H | 130 W | 2766 | 984 | 12.9 | 4,919 | NE | 60 N | 170 W | 2913 | 824 | 13.5 | 4,122 | | NE | 110 N | 120 W | 2784 | 1024 | 12.9 | 5,120 | NE | 60 N | 160 W | 2900 | 667 | 13.5 | 3,336 | Table 7-2 (cont'd). Northeast Area -- Averaged Radiation Levels at Each Survey Location. | | | | | | | AVG GAMM | | |----------|--------------|----------------|---|------------------------|------------------------|---------------------|----------------------------------| | SOF | M/S
COORD | WEST
COORD | | AVG GAMMA
21-m(com) | AVG BETA
21-cm(dpm) | EXPOSURE
(uR/Hr) | AVG BETA
(clpm/100cm2) | | | | | ? | | | | 4,200 | | WE. | 60 N | 150 W
140 W | | 29 82
3006 | 840
1030 | 13.9
14.0 | 5,150 | | NE
NE | 60 N | 130 W | | 3066 | 1021 | 14.2 | 5,104 | | NE | 60 N | 120 W | | 2968 | 1041 | 13.8 | 5,205 | | HE | 60 N | 110 W | | 3009
2939 | 804
917 | 14.0
13.7 | 4,018
4,583 | | ME | 60 N | 100 ¥ | | 2939
2900 | 918 | 13.5 | 4,590 | | WE | 60 N | 80 W | | 2975 | 908 | 13.8 | 4,541 | | HE | 60 N | 70 ¥ | | 3061 | 1017 | 14.2 | 5,085 | | HE
HE | 60 N | 60 W | | 2973
2823 | 9 0 1
657 | 13.8
13.1 | 4,506 | | HE | 50 N | 200 W | | 3040 | 910 | 14.1 | 3,283
4,551 | | NE | 50 N | 190 W | | 2836 | 873 | 13.2 | 4,367 | | NE | 50 N
50 N | 180 W
170 W | • | 3063
3099 | 1108 ! | 14.2 | 5,540 !
3,275 | | NE | 50 N | 160 W | | 3009 | 655
868 | 14.4
14.0 | 4,341 | | NE | 50 N | 150 W | | 2932 | 793 | 13.6 | 3, 96 7 | | NE
NE | 50 N
50 N | 140 W
130 W | | 3114
3127 | 762
901 | 14.5
14.5 | 3,810
4,503 | | HE | 50 N | 120 W | | 3038 | 889 | 14.1 | 4,445 | | NE | 50 N | 110 W | | 3123 | 890 | 14.5 | 4,448 | | NE
NE | 50 N
50 N | 100 W
50 W | | 3021
2907 | 836
668 | 14.0
13.5 | 4,180
3,340 | | NE | 50 N | 40 W | | 2903 | 670 | 13.5 | 3,349 | | NE | 40 N | 210 W | • | 3060 | 847 | 14.2 | 4,236 | | NE
NE | 40 N
40 N | 200 W
190 W | | 2992
2929 | 713
883 | 13.9
13.6 | 3,566 | | NE | 40 N | 180 W | | 2977 | 926 | 13.8 | 4,417
4,632 | | NE | 40 M | 170 W | | 2988 | 852 | 13.9 | 4,260 | | NE | 40 N
40 N | 160 W | | 29 80
2970 | 735
820 | 13.8
13.8 | 3,675 | | NE | 40 N | 140 W | | 3045 | 730 | 14.1 | 4,100
3,650 | | NE | 40 N | 130 W | | 2936 | 911 | 13.6 | 4,554 | | NE | 40 N
40 N | 120 W
110 W | | 3038
3012 | 991
964 | 14.1
14.0 | 4,953
4,819 | | HE | 40 N | 100 W | | 3115 | 958 | 14.5 | 4,792 | | NE | 30 H | 170 W | | 2941 | 724 | 13.7 | 3,621 | | HE | 30 N
30 N | 160 W
150 W | | 2926
3011 | 808
868 | 13.4
14.0 | 4,039
4,340 | | NE | 30 N | 140 W | | 3051 | 889 | 14.2 | 4,446 | | NE | 30 N | 130 W | | 2988 | 883 | 13.9 | 4,417 | | XE
XE | 30 N
30 N | 120 W | | 3070
3045 | 889
895 | 14.3
14.1 | 4,447 | | NE | 30 N | 100 W | | 3134 | 922 | 14.6 | 4,612 | | NE
NE | 20 N
20 N | 160 W | | 3037 | 868 | 14.1 | 4,340 | | NE | 20 N | 150 W
140 W | | 2938
2987 | 793
815 | 13.7
13.9 | 3,967
4,073 | | NE | 20 N | 130 W | | 2982 | 921 | 13.9 | 4,605 | | NE
NE | 20 N
20 N | 120 W | | 3002
2962 | 873
916 | 13.9
13.8 | 4,367
4,581 | | HE | 20 N | 100 W | | 3099 | 894 | 14.4 | 4,471 | | NE | 10 N | 140 W | | 2964 | 873 | 13.8 | 4,365 | | NE | 10 N
10 N | 130 W
120 W | | 2983
3012 | 895
953 | 13.9
14.0 | 4,477
4,765 | | NE | 10 N | 110 W | | 3060 | 943 | 14.2 | 4,713 | | NE | 10 N | 100 W | | 3082 | 948 | 14.3 | 4,741 | | NE | G N | 140 W
130 W | | 2996
3115 | 745
911 | 13.9
14.5 | 3,727
4,557 | | NE | 0 N | 120 W | | 3009 | 954 | 14.0 | 4,769 | | NE | 0 N | 110 W | | 3042
2965 | 857
1044 | 14.1
13.8 | 4,287
5,221 | | HE | 10 S | 130 W | | 2894 | 1011 | 13.4 | 5.057 | | NE | 10 S | 120 W | | 3041 | 825 | 14.1 | 4,127 | | NE | 10 S
10 S | 110 W
100 W | | 2995
2964 | 975
974 | 13.9
13.8 | 4,873
4,871 | | NE | 10 5 | 90 W | | 2988 | 959 | 13.9 | 4,793 | | NE | 20 S | 130 W | | 2918 | 698 | 13.4 | 3,489 | | ME | 20 S
20 S | 120 W
110 W | | 2975
2981 | 772
783 | 13.8
13.9 | 3,861
3,914 | | HE | 20 S | 100 W | | 2914 | 868 | 13.5 | 4,341 | | NE | 30 s | 120 W | | 3002 | 841 | 13.9 | 4,206 | | NE
NE | 30 S
30 S | 110 W
100 W | | 3040
3028 | 820
990 | 14.1
14.1 | 4,102
4,951 | | NE | 40 S | 120 W | | 3079 | 568 | 14.3 | 4,341 | | ЖE | 40 S | 110 W | | 2880 | 788 | 13.4 | 3,942 | | NE
NE | 40 S
40 S | 100 W
90 W | | 2932
2872 | 884
889 | 13.6
13.3 | 4,420
4,446 | | NE | 50 S | 120 W | * | 3093 | 991 | 14.4 | 4,956 | | NE
NE | 50 s
50 s | 110 W
100 W | | 2916
2931 | 744
942 | 13.6 | 3, <i>7</i> 20
4, <i>7</i> 12 | | KE | 50 S | 90 W | - | 2920 | 891 | 13.6
13.6 | 4,457 | | | | | | | | | | nemapdat.wk1, 12jun92, 19:20p. Figure 24. Northeast Area Map of Ambient Gamma Activity. #### NORTHEAST AREA AMBIENT GAMMA ACTIVITY @ 1-m (avg cpm) | | west coordinate: |-------------|------------------|------------|-------------|-----------|-------------|------|------|------|------|------|------|------|------|------|------|-------|--------|-------------|-------------| | north/south | | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | | coordinate: | 160 | | | | | | | | | | 2918 | 2939 | 2880 | 3045 | 3019 | 3050 | 3018 | 3055 | 2991 | | | 150 | |
 | | | | 3130 | 2983 | 2969 | 2977 | 2891 | 2969 | 2938 | 2929 | 2977 | 2960 | 2929 | 2994 | | | 140 | | | | | | | 3001 | 2980 | 2949 | 2896 | 2881 | 2780 | 2833 | 2933 | 2974 | 2947 | 2912 | 2959 | | | 130 | | | | | | 3188 | 2966 | 2931 | 2811 | 2872 | 2855 | 2870 | 2897 | 2875 | 2847 | 2953 | 3010 | 3013 | | | 120 | | | | | ٠ | 2977 | 2956 | 2880 | 2904 | 2813 | 2800 | 2871 | 2862 | 2912 | 2955 | 2939 | 3031 | | | | 110 | | | | 3083 | 3096 | 2962 | 2882 | 2879 | 2766 | 2784 | obs | 2715 | 2838 | 2858 | 2933 | 2930 | 3005 | | | | 100 | | | | | 2988 | 3018 | 3052 | 2954 | 3001 | 2708 | obs | 2648 | 2772 | 2936 | 2986 | 2927 | 3081 | | | | 90 | | | | 3105 | 2986 | 2943 | 2906 | 2491 | 2097 | 2319 | 2840 | 2927 | 2865 | 2954 | 2917 | obs | 3069 | | | | 80 | | | | 3075 | 3037 | 2989 | 3108 | 3000 | 2909 | obs | 2476 | 2597 | 2936 | 2843 | 2918 | 2937 | 2995 | | | | 70 | | | | 3028 | 2974 | 2998 | 2988 | obs | 2921 | 2637 | 2859 | 2874 | 2962 | 2970 | 2957 | 3118 | 2971 | | | | 60 | | | 2908 | 2951 | 2913 | 2900 | 2982 | 3006 | 3066 | 2968 | 3009 | 2939 | 2900 | 2975 | 3061 | 2973 | 2823 | | | | 50 | | 3040 | 2836 | 3061 | 3099 | 3009 | 2932 | 3114 | 3127 | 3038 | 3123 | 3021 | | | | .* | 2907 | 2903 | | | 40 | 3060 | 2992 | 2929 | 2977 | 2988 | 2980 | 2970 | 3045 | 2936 | 3038 | 3012 | 3115 | | | | | | | | | 30 | | | | | 2941 | 2926 | 3011 | 3051 | 2988 | 3070 | 3045 | 3134 | | | TOTA | L SDF | SURVE | · · · · · · | | - | 20 | : | NOR | THEAS | T AREA | | 3037 | 2938 | 2987 | 2982 | 3002 | 2962 | 3099 | | : | AMBIE | NT GAM | IMA a 1 | | | | 10 | | AMB I EN | | 4A a 1 | | | | 2964 | 2983 | 3012 | 3060 | 3082 | | : | | | | • | | (-n=south) | 0 | : 10 | edian | | 2966 | : | | | 2996 | 3115 | 3009 | 3042 | 2965 | | : | mean | | 2996
225 | : | | | -10 | : | mean | = | 2948 | • | | | | 2894 | 3041 | 2995 | 2964 | 2988 | : | max | | 5914 | : | | | | : | sdev | * | 126 | : | | | | | | | | | : | min | = | 2097 | : | | | -20 | : | max | = | 3188 | : | | | | 2918 | 2975 | 2981 | 2914 | | : | n | = | 812 | : | | | | : | min | = | 2097 | : | | | | | | | | | | | | | : | | | -30 | : ' | n | = | 208 | : | | | | | 3002 | 3040 | 3028 | | | | | | | | | | : | • • • • • • | • • • • • | • • • • • • | : | | | | | | | | | | | | | | | | -40 | : s | sa = 8 | kGd + | (523) | : | | | | | 3079 | 2880 | 2932 | 2872 | | | | | | | | | : | = | 3489 d | pm | : | | | | | | | | | | | | | | 3093 2916 2931 2920 -50 ### Figure 25. Northeast Area Map of Gamma Exposure. #### NORTHEAST AREA AMBIENT GAMMA EXPOSURE @ 1-m (avg uR/hr) 14.4 13.6 13.6 13.6 | | | NORTHEAST AREA AMBIENT GAMMA EXPOSURE @ 1-m (avg uR/hr) West coordinate: | | | | | | | | | | | | | | | | | | |-------------|------------|--|-----------|--------|-------------|-------|-------|------|------|-------|---------|------|------|-------|-------|----------|--------|-------------|-------| | | * | | | | | | | | west | coord | linate: | | | | | | | | | | north/south | | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | | coordinate: | | | | | | | | | | | | | | | | | | | •••• | | | 160 | | | | | | | | | | 13.6 | 13.7 | 13.4 | 14.1 | 14.0 | 14.2 | 14.0 | 14.2 | 13.9 | 150 | | | | | | | 14.5 | 13.9 | 13.8 | 13.8 | 13.4 | 13.8 | 13.6 | 13.6 | 13.8 | 13.8 | 13.6 | 13.9 | 140 | • | | | | | | 13.9 | 13.8 | 13.7 | 13.5 | 13.4 | 12.9 | 13.2 | 13.6 | 13.8 | 13.7 | 13.6 | 13.7 | 130 | | | | | | 14.8 | 13.8 | 13.6 | 13.1 | 13.3 | 13.3 | 13.3 | 13.5 | 13.4 | 13.2 | 13.7 | 14.0 | 14.0 | | | | | | | | | • | | | | | | | | | | | | | | | 120 | | - | | | | 13.8 | 13.7 | 13.4 | 13.5 | 13.1 | 13.0 | 13.3 | 13.3 | 13.5 | 13.7 | 13.7 | 14.1 | 110 | | | | 14.3 | 14.4 | 13.8 | 13.4 | 13.4 | 12.9 | 12.9 | obs | 12.6 | 13.2 | 13.3 | 13.6 | 13.6 | 14.0 | 100 | | | | | 13.9 | 14.0 | 14.2 | 13.7 | 13.9 | 12.6 | obs | 12.3 | 12.9 | 13.6 | 13.9 | 13.6 | 14.3 | 90 | | | | 14.4 | 13.9 | 13.7 | 13.5 | 11.6 | 9.7 | 10.8 | 13.2 | 13.6 | 13.3 | 13.7 | 13.6 | obs | 14.3 | | | | | | | | | | | | | | | | | 47. 4 | 4 | | | 47.0 | | | | 80 | | | | 14.5 | 14.1 | 13.9 | 14.4 | 13.9 | 13.5 | obs | 11.5 | 12.1 | 13.6 | 13.2 | 13.0 | 13.0 | 13.9 | | | | 70 | | | | 4/ 4 | 17 0 | 17.0 | 17.0 | | 17 4 | 17 7 | 17 7 | 47 / | 17 0 | 13.8 | 17 7 | 1/ 5 | 17 0 | | | | 70 | | | | 14.) | 13.8 | 13.9 | 13.9 | ODS | 13.0 | 12.3 | 13.3 | 13.4 | 13.8 | 13.8 | 13.7 | 14.3 | 13.8 | | | | 60 | | | 17 5 | 17 7 | 17 5 | 17 5 | 17 0 | 16.0 | 16 2 | 17 2 | 14.0 | 13 7 | 17 5 | 13.8 | 1/, 2 | 17 8 | 17 1 | | | | 5 0 | | | 13.3 | 13.7 : | | 1.0.0 | 13.7 | 14.0 | 17.2 | 13.0 | 17.0 | 13.1 | | 13.0 | 17.2 | | 19.1 | | | | 50 | | 14 1 | 13.2 | 14.2 | 14.4 | 14.0 | 13 6 | 14 5 | 14 5 | 14 1 | 14 5 | 14.0 | | | | | 13.5 | 13.5 | | | 50 | | 14.1 | | | 1444 | 1410 | 13.0 | 14.5 | 14.5 | , 1 | 14.5 | .4.0 | | | | | | 1000 | | | 40 | 14.2 | 13.9 | 13.6 | 13.8 | 13.9 | 13.8 | 13.8 | 14.1 | 13.6 | 14.1 | 14.0 | 14.5 | 30 | | | | | 13.7 | 13.6 | 14.0 | 14.2 | 13.9 | 14.3 | 14.1 | 14.6 | | • • • | | | • • • • • • | | | | | | | | | | | | | | | | | | : | TOTA | AL SDF | SURVE | Y : | | | 20 | •• | | | | | 14.1 | 13.7 | 13.9 | 13.9 | 13.9 | 13.8 | 14.4 | | : / | AMB I EN | r gamm | A EXPO | SURE: | | | | : | NO | RTHEAS | T AREA | : | | | | | | | | | : | a 1 | m (av | g uR/h | r) : | | | 10 | : / | AMB I EN | T GAMM | A EXPO | SURE: | | | 13.8 | 13.9 | 14.0 | 14.2 | 14.3 | | : | | | | : | | | | : | a 1-m | (avg | uR/hr) | : | | | | | | | | | : 1 | nedian | = | 13.8 | : | | (-n=south) | 0 | : | | | | : | | | 13.9 | 14.5 | 14.0 | 14.1 | 13.8 | | : | mean | = | 13.9 | : | | | | : 1 | median | = | 13.8 | : | | | | | | | | | : | sdev | = | 1.0 | : | | • | -10 | : | mean | = | 13.7 | : | | | | 13.4 | 14.1 | 13.9 | 13.8 | 13.9 | : | max | = | 27.5 | : | | | | : | sdev | = | 0.6 | : | | | | | | | | | : | min | = | 9.8 | : | | • | -20 | : | max | = | 14.8 | : | | | | 13.6 | 13.8 | 13.9 | 13.5 | | : | n | = | 812 | : | | | | : | min | = | 9.8 | : | | | | | | | | | : | | | • • • • • • | : | | | -30 | : | n | = | 208 | : | | | | | 13.9 | 14.1 | 14.1 | | | | | | | | | | :. | • • • • • | | • • • • • • | : | | | | | | | | | | | • | | | | - | -40 | : : | ssa = | BkGd + | (2.4) | : | | | | | 14.3 | 13.4 | 13.6 | 13.3 | | | | | | | | | : | z | 16.2 | uR/hr | : | | | | | | | | | | | | | | :....: # Figure 26. Northeast Area Map of Surface Beta Activity. #### NORTHEAST AREA BETA ACTIVITY @ 1-cm (dpm/100cm2) | | | | | | | | | | wes | t coor | dinate | : | | | • | | | | | |-------------|------|--------|------------|-----------------|------------|-------|-------|-------|-------|--------|--------|-------|-------|-------|-------|--------------|--------|----------------|---------------------------------------| | north/south | i. | 210 | 200 | 190 | 180 | 170 | 160 | 150 | | | 120 | | 100 | 90 | 80 | 70 | 60 | 50 | 40 | | coordinate: | 160 | | | | | | | | | | 4,011 | 3,716 | 4,301 | 4,583 | 4,717 | 5,329 | 5,373 | 4,679 | 4,592 | | | 150 | | | | | | | 4,691 | 4,226 | 4,399 | 3,723 | 4,589 | 3,854 | 5,004 | 4,963 | 5,136 | 4,474 | 4,364 | 5,189 | | | 140 | | | | | | | 4,449 | 4,700 | 4,032 | 3,921 | 4,078 | 4,870 | 4,622 | 4,920 | 4,684 | 4,440 | 4,449 | 4,749 | | | 130 | | | | | | 4,629 | 3,864 | 4,507 | 3,564 | 4,472 | 4,076 | 4,278 | 4,106 | 4,663 | 4,578 | 4,509 | 4,867 | 4,850 | | | 120 | | | | | | 3,714 | 3,469 | 3,928 | 4,076 | 4,340 | 4,901 | 4,618 | 4,781 | 4,659 | 4,749 | 4,544 | 4,636 | | | | 110 | | | 4 | ,596 | 4,066 | 4,595 | 4,249 | 3,504 | 4,919 | 5,120 | obs | 4,306 | 4,587 | 4,495 | 4,296 | 4,712 | 4,316 | | | | 100 | | | | | 4,643 | 4,175 | 4,532 | 4,906 | 3,962 | 4,580 | obs | 4,878 | 4,276 | 3,894 | 4,191 | 4,739 | 4,776 | : | | | 90 | | | 4 | ,938 | 4,269 | 5,247 | 4,836 | 4,195 | 5,339 | 4,331 | 5,145 | 5,182 | 4,719 | 4,649 | 4,502 | obs | 4,158 | | | | 80 | | | 4 | 4,836 | 4,735 | 4,315 | 5,224 | 4,331 | 4,855 | obs | 4,977 | 4,500 | 4,891 | 3,903 | 4,709 | 4,864 | 3,651 | | | | 70 | | | | ,581 | 3,826 | 3,942 | 4,622 | obs | 4,627 | 4,486 | 4,541 | 4,149 | 5,242 | 4,728 | 4,500 | 4,686 | 4,233 | | | | 60 | | 4 | ,532 3 | 5,755 | 4,122 | 3,336 | 4,200 | 5,150 | 5,104 | 5,205 | 4,018 | 4,583 | 4,590 | 4,541 | 5,085 | 4,506 | 3,283 | | | | 50 | 4 | ,551 4 | ,367 5 | 5,540 | 3,275 | 4,341 | 3,967 | 3,810 | 4,503 | 4,445 | 4,448 | 4,180 | | | | | 3,340 | 3,349 | | | 40 4 | ,236 3 | ,566 4 | ,417 4 | ,632 | 4,260 | 3,675 | 4,100 | 3,650 | 4,554 | 4,953 | 4,819 | 4,792 | | | | | | | | | 30 | | | | : | 3,621 | 4,039 | 4,340 | 4,446 | 4,417 | 4,447 | 4,474 | 4,612 | | | тот | AL SDF | SURVE | · · · · · · · · · · · · · · · · · · · | | | 20 | ··· | | THEAST | AREA | | 4,340 | 3,967 | 4,073 | 4,605 | 4,367 | 4,581 | 4,471 | | _ | BETA A | | Y a 1- | • | | | 10 | : B | ETA AC | TIVITY | | | | | 4,365 | 4,477 | 4,765 | 4,713 | 4,741 | | : | • | | | : | | (-n=south) | 0 | : | edian | | ,500 | : | | | 3,727 | 4,557 | 4,769 | 4,287 | 5,221 | | : | mean
sdev | = (| 4,200
555 | : | | | -10 | : | mean | = 4 | ,445 | : | | | | 5,057 | 4,127 | 4,873 | 4,871 | 4,793 | : | max | = (| 5,215 | : | | | -20 | : | max
min | | ,373 | : | | | | 3,489 | 3,861 | 3,914 | 4,341 | | : | min
n | = | 2,325
8 1 | : | | | -30 | : | min
n | = 3 | 275
208 | : | | | | | 4,206 | 4,102 | 4,951 | | :. | • • • • • • | | • • • • • • | • • • • • | | | -40 | : s | sa = 81 | kGd +
,498 d | | | | | | | 4,341 | 3,942 | 4,420 | 4,446 | | | | | | | | -50 | : | | . | • | | | | | | 4,956 | 3,720 | 4,712 | 4,457 | | | | | | 7.7. East Area: A statistical summary of the East Area survey
results are presented in Table 8-1. SSA values have been estimated from the East Area data so the area data can be compared to the overall site data. The averaged radiation levels for each location on the sample grid for the East Area are presented in Table 8-2. The radiation levels for each 10-ft grid interval are shown in map format in Figure 27 (Gamma Activity), Figure 28 (Gamma Exposure), and Figure 29 (Beta Activity). No statistically significant ambient gamma or surface beta activity was recorded in the East Area. All survey readings were indistinguishable from normal background radiation. | | | | AVG GAMMA | AVG BETA | AVG GAMM
EXPOSURE | AVG BETA | |-----------|---------|-------|-----------|------------|----------------------|--------------| | | | | a1-m(cpm) | a1-cm(dpm) | (uR/Hr) | (dpm/100cm2) | | EAST | | | | | | | | AREA | median | = | 2911 | 887 | 13.5 | 4,435 | | SUMMARY | mean | = | 2873 | 874 | 13.4 | 4,368 | | | sdev | = | 117 | 126 | 0.5 | 632 | | | max | = | 3061 | 1,078 | 14.2 | 5,390 | | | min | = | 2498 | 629 | 11.6 | 3,144 | | | n | = | 33 | 33 | 33 | 33 | | | | | | | | | | ssa based | | | 2911 | 887 | 13.5 | 4,435 | | on eas | t | | + 273 | + 294 | + 1.3 | + 1,472 | | are | a data: | = | 3184 | 1,181 | 14.8 | 5,906 | | | | | | | | | | ssa based | | BkGd= | 2966 | 841 | 13.8 | 4,207 | | on tota | al | | + 523 | + 258 | + 2.4 | + 1291 | | surve | y data: | = | 3489 | 1,099 | 16.2 | 5,498 | | | | | | | | | Table 8-1. Statistical Summary of East Area Survey Results. Table 8-2. East Area -- Averaged Radiation Levels at Each Survey Location. SDF BASELINE beta/gamma SURVEY: AVERAGE 10-FT GRID ACTIVITY: EAST AREA: Averaged Rad Level at Each Location | | | | | | | | AVG GAMM | A | |------|-------|-------|---|------------------|------------------|---|-----------------|--------------| | SDF | N/S | WEST | D | AVG GAMMA | AVG BETA | | EXPOSURE | AVG BETA | | AREA | COORD | COORD | | a1-m(cpm) | 31-cm(dpm) |) | (uR/Hr) | (dpm/100cm2) | | | | | ? | | | | | | | E | 60 S | 120 W | | 2975 | 1,039 | | 13.8 | 5,193 | | Ε | 60 S | 110 W | | 2914 | 937 | | 13.6 | 4,687 | | Ε | 60 S | 100 W | | 2796 | 1,008 | | 13.0 | 5,041 | | Ε | 70 S | 110 W | | 2967 | 1,078 | | 13.8 | 5,390 | | E | 70 S | 100 W | | 2917 | 983 | | 13.6 | 4,914 | | E | 70 s | 90 W | | 2663 | 961 | | 12.4 | 4,807 | | E | 80 S | 120 W | | 2973 | 811 | | 13.8 | 4,053 | | Ε | 80 S | 110 W | * | 3061 | 1,077 | | 14.2 | 5,383 | | Ε | 80 S | 100 W | | 2836 | 1,070 | | 13.2 | 5,351 | | E | 80 S | 90 W | | 2498 | 875 | | 11.6 | 4,377 | | Ε | 80 S | 80 W | | 2630 | 923 | | 12.2 | 4,613 | | E | '90 S | 110 W | * | 3056 | 982 | | 14.2 | 4,909 | | Ε | 90 S | 100 W | | 2810 | 866 | | 13.1 | 4,331 | | E | 90 S | 90 W | | 2748 | 890 | | 12.8 | 4,452 | | Ε | 90 S | 80 W | | 2723 | 995 | | 12.7 | 4,974 | | Ε | 100 S | 100 W | | 2860 | 771 | | 13.3 | 3,854 | | Ε | 100 S | 90 W | | 2915 | 7 9 2 | | 13.6 | 3,958 | | E | 100 S | 80 W | | 2924 | 887 | | 13.6 | 4,435 | | E | 110 S | 100 W | | 2911 | 863 | | 13.5 | 4,315 | | Ε | 110 S | 90 W | | 2970 | 961 | | 13.8 | 4,806 | | E | 110 S | 80 W | | 2936 | 810 | | 13.7 | 4,050 | | E | 120 S | 100 W | | 2942 | 734 | | 13.7 | 3,670 | | E | 120 S | 90 W | | 2957 | 925 | | 13.8 | 4,627 | | Ε | 120 S | 80 W | | 2980 | 976 | | 13.9 | 4,878 | | E | 130 S | 100 W | | 2917 | 669 | | 13.6 | 3,343 | | Ε | 130 S | 90 W | | 2916 | 782 | | 13.6 | 3,909 | | E | 130 S | 80 W | | 2911 | 830 | | 13.5 | 4,150 | | E | 130 S | 70 W | | 2782 | 891 | | 12.9 | 4,453 | | E | 140 S | 100 W | | 2837 | 663 | | 13.2 | 3,313 | | E | 140 S | 90 W | | 2895 | 629 | | 13.5 | 3,144 | | E | 140 S | 80 W | | 2857 | 801 | | 13.3 | 4,006 | | E | 140 S | 70 W | | 2850 | 652 | | 13.3 | 3,260 | | E | 150 S | 100 W | | 2883 | 699 | | 13.4 | 3,494 | | | | | | | | | | | Figure 27. East Area Map of Ambient Gamma Activity. #### EAST AREA AMBIENT GAMMA & 1-m (cpm) | | | | , | west co | ordinat | e: | | | |-------|------|------|------|---------|---------|------|------|--| | | | 120 | 110 | 100 | 90 | 80 | 70 | | | | | | | | | | | | | south | -60 | 2975 | 2914 | 2796 | | | | | | | -70 | | 2967 | 2917 | 2663 | · | | | | | -80 | 2973 | 3061 | 2836 | 2498 | 2630 | | | | | -90 | | 3056 | 2810 | 2748 | 2723 | | | | | -100 | | | 2860 | 2915 | 2924 | | | | | -110 | | | 2911 | 2970 | 2936 | | | | | -120 | | | 2942 | 2957 | 2980 | | | | . • | -130 | | | 2917 | 2916 | 2911 | 2782 | | | | -140 | • | | 2837 | 2895 | 2857 | 2850 | | | | -150 | | | 2883 | | | | | | EAST AREA | | TOTAL | TOTAL SDF SURVEY | | | | | | |-----------|-------------------|-------|------------------|----------|------|--|--|--| | GAMM/ | MA ACTIVITY GAMMA | | A AC | ACTIVITY | | | | | | a 1· | -m: (| cpm) | a 1-m (cpm) | | cpm) | | | | | •• | | | | | | | | | | median | = | 2911 | median | = | 2966 | | | | | mean | = | 2873 | mean | = | 2996 | | | | | sdev | = | 117 | sdev | = | 225 | | | | | max | = | 3061 | max | = | 5914 | | | | | min | = | 2498 | min | = | 2097 | | | | | n | = | 33 | n | = | 812 | | | | ssa = 8kGd + (523) = 3489cpm Figure 28. East Area Map of Gamma Exposure. #### EAST AREA AMBIENT GAMMA EXPOSURE @ 1-m (uR/hr) | | | | | west co | ordinat | e: | | | |-------|------|------|------|---------|---------|------|------|--| | | | 120 | 110 | 100 | 90 | 80 | 70 | | | | | | | | | | | | | south | -60 | 13.8 | 13.6 | 13.0 | | | | | | | -70 | | 13.8 | 13.6 | 12.4 | | | | | | -80 | 13.8 | 14.2 | 13.2 | 11.6 | 12.2 | | | | | -90 | | 14.2 | 13.1 | 12.8 | 12.7 | | | | | -100 | | | 13.3 | 13.6 | 13.6 | | | | | -110 | | | 13.5 | 13.8 | 13.7 | | | | | -120 | | | | 13.8 | 13.9 | | | | | -130 | | | 13.6 | 13.6 | 13.5 | 12.9 | | | | -140 | | | 13.2 | 13.5 | 13.3 | 13.3 | | | | -150 | | | 13.4 | | | | | | EAST AREA | | | TOTAL | TOTAL SDF SURVEY | | | | | | |----------------|---|------|----------------|------------------|--------|--|--|--|--| | GAMMA EXPOSURE | | GAMM | GAMMA EXPOSURE | | | | | | | | a 1-m (uR/hr) | | | a 1 | -m (ı | uR/hr) | | | | | | • | | | | | •••• | | | | | | median | = | 13.5 | median | = | 13.8 | | | | | | mean | = | 13.4 | mean | = | 13.9 | | | | | | sdev | = | 0.5 | sdev | = | 1.0 | | | | | | max | = | 14.2 | max | = | 27.5 | | | | | | min | = | 11.6 | min | = | 9.8 | | | | | | n | = | 33 | n | = | 812 | | | | | | | | | | | | | | | | ssa = BkGd + (2.4)= 16.2 uR/hr Figure 29. East Area Map of Surface Beta Activity. #### EAST AREA BETA ACTIVITY @ 1-cm (dpm/100cm2) | | | | | west co | ordinat | e: | | | |-------------|------|-------|-------|---------|---------|-------|-------|--| | | | 120 | 110 | 100 | 90 | 80 | 70 | | | | | | | | | | | | | south | -60 | 5,193 | 4,687 | 5,041 | | | | | | coordinate: | -70 | | 5,390 | 4,914 | 4,807 | | | | | | -80 | 4,053 | 5,383 | 5,351 | 4,377 | 4,613 | - | | | | -90 | | 4,909 | 4,331 | 4,452 | 4,974 | | | | | -100 | | | 3,854 | 3,958 | 4,435 | | | | | -110 | | | 4,315 | 4,806 | 4,050 | | | | | -120 | | | 3,670 | 4,627 | 4,878 | | | | | -130 | | | 3,343 | 3,909 | 4,150 | 4,453 | | | | -140 | | | 3,313 | 3,144 | 4,006 | 3,260 | | | | -150 | | | 3,494 | | | | | | EAST AREA | | | TOTAL | SDF | SURVEY | | |-----------|-----|----------|-------|--------|--------|-----------| | BETA | ACT | IVITY | | BETA | ACT | YTIVI | | a 1-cm | (dp | m/100cm2 |) | a 1-cm | (dpr | n/100cm2) | | •• | | | | • | | | | median | = | 4,435 | | median | = | 4,207 | | mean | = | 4,368 | | mean | = | 4,200 | | sdev | = | 632 | | sdev | = | 555 | | max | = | 5,390 | | max | = | 6,215 | | min | = | 3,144 | | min | = | 2,325 | | n | = | 33 | | n | = | 811 | ssa = BkGd + (1,291) = 5498 dpm/100cm2 #### 8. References - 1. "Preliminary beta/gamma Radiological Survey and Data Analysis for the Sodium Disposal Facility Closure"; 13 Feb 92; J.Collins; ETEC 886-ZB-0003. - 2. "Radiological Survey of the Sodium Disposal Facility --Bldg T886"; 3 June 88; J.Chapman; ETEC GEN-ZR-0004. - 3. "Investigation of Naturally Occurring Radionuclides In Rock, Soils, and Groundwater [at the] Santa Susana Field Laboratory, Ventura County, California"; 1 June 90; Groundwater Resources Consultants, Inc; 8640M-77.